Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac353.
The discovery of drug-target interactions (DTIs) is a very promising area of research with great potential. The accurate identification of reliable interactions among drugs and proteins via computational methods, which typically leverage heterogeneous information retrieved from diverse data sources, can boost the development of effective pharmaceuticals. Although random walk and matrix factorization techniques are widely used in DTI prediction, they have several limitations. Random walk-based embedding generation is usually conducted in an unsupervised manner, while the linear similarity combination in matrix factorization distorts individual insights offered by different views. To tackle these issues, we take a multi-layered network approach to handle diverse drug and target similarities, and propose a novel optimization framework, called Multiple similarity DeepWalk-based Matrix Factorization (MDMF), for DTI prediction. The framework unifies embedding generation and interaction prediction, learning vector representations of drugs and targets that not only retain higher order proximity across all hyper-layers and layer-specific local invariance, but also approximate the interactions with their inner product. Furthermore, we develop an ensemble method (MDMF2A) that integrates two instantiations of the MDMF model, optimizing the area under the precision-recall curve (AUPR) and the area under the receiver operating characteristic curve (AUC), respectively. The empirical study on real-world DTI datasets shows that our method achieves statistically significant improvement over current state-of-the-art approaches in four different settings. Moreover, the validation of highly ranked non-interacting pairs also demonstrates the potential of MDMF2A to discover novel DTIs.
药物-靶点相互作用(DTI)的发现是一个极具潜力的研究领域。通过计算方法准确识别药物和蛋白质之间可靠的相互作用,通常可以促进有效药物的开发。尽管随机游走和矩阵分解技术在 DTI 预测中得到了广泛应用,但它们存在一些局限性。基于随机游走的嵌入生成通常是在无监督的情况下进行的,而矩阵分解中的线性相似性组合会扭曲不同视图提供的个体见解。为了解决这些问题,我们采用多层网络方法来处理不同的药物和靶点相似性,并提出了一种新的优化框架,称为基于多重相似性的 DeepWalk 矩阵分解(MDMF),用于 DTI 预测。该框架统一了嵌入生成和相互作用预测,学习药物和靶点的向量表示,不仅保留了所有超层和特定层局部不变性的高阶接近度,而且还可以通过内积来近似相互作用。此外,我们开发了一种集成方法(MDMF2A),它集成了 MDMF 模型的两个实例,分别优化了精度-召回率曲线下的面积(AUPR)和接收者操作特征曲线下的面积(AUC)。在真实世界的 DTI 数据集上的实证研究表明,我们的方法在四个不同的设置中均优于当前最先进的方法,具有统计学意义的改进。此外,对高度排名的非相互作用对的验证也证明了 MDMF2A 发现新的 DTI 的潜力。