Suppr超能文献

用于药物-靶点相互作用预测的细粒度选择性相似性整合

Fine-grained selective similarity integration for drug-target interaction prediction.

作者信息

Liu Bin, Wang Jin, Sun Kaiwei, Tsoumakas Grigorios

机构信息

Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad085.

Abstract

The discovery of drug-target interactions (DTIs) is a pivotal process in pharmaceutical development. Computational approaches are a promising and efficient alternative to tedious and costly wet-lab experiments for predicting novel DTIs from numerous candidates. Recently, with the availability of abundant heterogeneous biological information from diverse data sources, computational methods have been able to leverage multiple drug and target similarities to boost the performance of DTI prediction. Similarity integration is an effective and flexible strategy to extract crucial information across complementary similarity views, providing a compressed input for any similarity-based DTI prediction model. However, existing similarity integration methods filter and fuse similarities from a global perspective, neglecting the utility of similarity views for each drug and target. In this study, we propose a Fine-Grained Selective similarity integration approach, called FGS, which employs a local interaction consistency-based weight matrix to capture and exploit the importance of similarities at a finer granularity in both similarity selection and combination steps. We evaluate FGS on five DTI prediction datasets under various prediction settings. Experimental results show that our method not only outperforms similarity integration competitors with comparable computational costs, but also achieves better prediction performance than state-of-the-art DTI prediction approaches by collaborating with conventional base models. Furthermore, case studies on the analysis of similarity weights and on the verification of novel predictions confirm the practical ability of FGS.

摘要

药物-靶点相互作用(DTIs)的发现是药物研发中的一个关键过程。对于从众多候选物中预测新型DTIs而言,计算方法是一种有前景且高效的替代方法,可替代繁琐且成本高昂的湿实验室实验。最近,随着来自不同数据源的大量异构生物信息的可得性,计算方法已能够利用多种药物和靶点相似性来提高DTI预测的性能。相似性整合是一种有效且灵活的策略,可跨互补相似性视图提取关键信息,为任何基于相似性的DTI预测模型提供压缩输入。然而,现有的相似性整合方法从全局角度过滤和融合相似性,忽略了每个药物和靶点的相似性视图的效用。在本研究中,我们提出了一种细粒度选择性相似性整合方法,称为FGS,它采用基于局部相互作用一致性的权重矩阵,在相似性选择和组合步骤中以更细粒度捕获和利用相似性的重要性。我们在各种预测设置下的五个DTI预测数据集上评估了FGS。实验结果表明,我们的方法不仅在可比的计算成本下优于相似性整合竞争对手,而且通过与传统基础模型协作,比当前最先进的DTI预测方法具有更好的预测性能。此外,关于相似性权重分析和新预测验证的案例研究证实了FGS的实际能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验