Department of Cardiovascular Surgery, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (INCOR), São Paulo, São Paulo, Brazil.
Department of Health Care Policy, Harvard Medical School, Boston, USA.
Sci Rep. 2022 Sep 7;12(1):15177. doi: 10.1038/s41598-022-19473-1.
Clinical prediction models for deep sternal wound infections (DSWI) after coronary artery bypass graft (CABG) surgery exist, although they have a poor impact in external validation studies. We developed and validated a new predictive model for 30-day DSWI after CABG (REPINF) and compared it with the Society of Thoracic Surgeons model (STS). The REPINF model was created through a multicenter cohort of adults undergoing CABG surgery (REPLICCAR II Study) database, using least absolute shrinkage and selection operator (LASSO) logistic regression, internally and externally validated comparing discrimination, calibration in-the-large (CL), net reclassification improvement (NRI) and integrated discrimination improvement (IDI), trained between the new model and the STS PredDeep, a validated model for DSWI after cardiac surgery. In the validation data, c-index = 0.83 (95% CI 0.72-0.95). Compared to the STS PredDeep, predictions improved by 6.5% (IDI). However, both STS and REPINF had limited calibration. Different populations require independent scoring systems to achieve the best predictive effect. The external validation of REPINF across multiple centers is an important quality improvement tool to generalize the model and to guide healthcare professionals in the prevention of DSWI after CABG surgery.
临床预测模型可用于预测冠状动脉旁路移植术(CABG)后深部胸骨伤口感染(DSWI),但在外部验证研究中的效果不佳。我们开发并验证了一种新的 CABG 术后 30 天 DSWI 预测模型(REPINF),并与胸外科医生协会模型(STS)进行了比较。REPINF 模型是通过接受 CABG 手术的成年人多中心队列(REPLICCAR II 研究)数据库创建的,使用最小绝对收缩和选择算子(LASSO)逻辑回归,通过内部和外部验证比较鉴别力、校准大样本(CL)、净重新分类改善(NRI)和综合鉴别改善(IDI),在新模型和 STS PredDeep 之间进行训练,STS PredDeep 是一种经过验证的心脏手术后 DSWI 预测模型。在验证数据中,c 指数=0.83(95%置信区间 0.72-0.95)。与 STS PredDeep 相比,预测结果提高了 6.5%(IDI)。然而,STS 和 REPINF 的校准都有限。不同人群需要独立的评分系统来达到最佳预测效果。REPINF 在多个中心的外部验证是一种重要的质量改进工具,可用于推广模型,并指导医疗保健专业人员预防 CABG 术后 DSWI。