Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
College of Pharmacy, Chungnam National University, Daejeon, 34134, Korea.
Commun Biol. 2022 Sep 7;5(1):924. doi: 10.1038/s42003-022-03872-1.
The response variation to anti-cancer drugs originates from complex intracellular network dynamics of cancer. Such dynamic networks present challenges to determining optimal drug targets and stratifying cancer patients for precision medicine, although several cancer genome studies provided insights into the molecular characteristics of cancer. Here, we introduce a network dynamics-based approach based on attractor landscape analysis to evaluate the therapeutic window of a drug from cancer signaling networks combined with genomic profiles. This approach allows for effective screening of drug targets to explore potential target combinations for enhancing the therapeutic window of drug responses. We also effectively stratify patients into desired/undesired response groups using critical genomic determinants, which are network-specific origins of variability to drug response, and their dominance relationship. Our methods provide a viable and quantitative framework to connect genotype information to the phenotypes of drug response with regard to network dynamics determining the therapeutic window.
抗癌药物的反应变化源于癌症复杂的细胞内网络动态。尽管一些癌症基因组研究为癌症的分子特征提供了一些见解,但这些动态网络给确定最佳药物靶点和对精准医学进行癌症患者分层带来了挑战。在这里,我们介绍了一种基于网络动力学的方法,该方法基于吸引子景观分析,结合基因组图谱,从癌症信号网络中评估药物的治疗窗口。这种方法允许有效地筛选药物靶点,以探索增强药物反应治疗窗口的潜在目标组合。我们还使用关键基因组决定因素(即药物反应变异性的网络特异性起源及其优势关系)将患者有效地分层为理想/不理想的反应组。我们的方法提供了一种可行的定量框架,将基因型信息与网络动力学决定治疗窗口的药物反应表型联系起来。