Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
School of Physics & Astronomy, University of Manchester, Manchester, UK.
Nature. 2022 Sep;609(7926):276-281. doi: 10.1038/s41586-022-05002-7. Epub 2022 Sep 7.
Electrical resistance usually originates from lattice imperfections. However, even a perfect lattice has a fundamental resistance limit, given by the Landauer conductance caused by a finite number of propagating electron modes. This resistance, shown by Sharvin to appear at the contacts of electronic devices, sets the ultimate conduction limit of non-interacting electrons. Recent years have seen growing evidence of hydrodynamic electronic phenomena, prompting recent theories to ask whether an electronic fluid can radically break the fundamental Landauer-Sharvin limit. Here, we use single-electron-transistor imaging of electronic flow in high-mobility graphene Corbino disk devices to answer this question. First, by imaging ballistic flows at liquid-helium temperatures, we observe a Landauer-Sharvin resistance that does not appear at the contacts but is instead distributed throughout the bulk. This underpins the phase-space origin of this resistance-as emerging from spatial gradients in the number of conduction modes. At elevated temperatures, by identifying and accounting for electron-phonon scattering, we show the details of the purely hydrodynamic flow. Strikingly, we find that electron hydrodynamics eliminates the bulk Landauer-Sharvin resistance. Finally, by imaging spiralling magneto-hydrodynamic Corbino flows, we show the key emergent length scale predicted by hydrodynamic theories-the Gurzhi length. These observations demonstrate that electronic fluids can dramatically transcend the fundamental limitations of ballistic electrons, with important implications for fundamental science and future technologies.
电阻通常源于晶格缺陷。然而,即使是完美的晶格也存在一个基本的电阻极限,这个极限由有限数量的传播电子模式引起的兰道尔电导所决定。这种由 Sharvin 发现出现在电子器件接触处的电阻,设定了非相互作用电子的最终传导极限。近年来,越来越多的证据表明存在流体动力学电子现象,这促使最近的理论探讨电子流体是否可以从根本上突破基本的兰道尔-沙尔文极限。在这里,我们使用高迁移率石墨烯科宾诺盘器件中单电子晶体管对电子流的成像来回答这个问题。首先,通过在液氦温度下对弹道流进行成像,我们观察到一种兰道尔-沙尔文电阻,它不是出现在接触处,而是分布在整个体相中。这为这种电阻的相位空间起源提供了依据,即源于传导模式数量的空间梯度。在高温下,通过识别和考虑电子-声子散射,我们展示了纯流体流动的细节。引人注目的是,我们发现电子流体消除了体相的兰道尔-沙尔文电阻。最后,通过对螺旋磁流体动力学科宾诺盘流的成像,我们展示了流体动力学理论预测的关键涌现长度尺度——古尔吉长度。这些观察结果表明,电子流体可以显著超越弹道电子的基本限制,这对基础科学和未来技术具有重要意义。