Suppr超能文献

多倍体对植物耐受非生物和生物胁迫的影响。

Impact of polyploidy on plant tolerance to abiotic and biotic stresses.

作者信息

Tossi Vanesa E, Martínez Tosar Leandro J, Laino Leandro E, Iannicelli Jesica, Regalado José Javier, Escandón Alejandro Salvio, Baroli Irene, Causin Humberto Fabio, Pitta-Álvarez Sandra Irene

机构信息

Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina.

Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina.

出版信息

Front Plant Sci. 2022 Aug 22;13:869423. doi: 10.3389/fpls.2022.869423. eCollection 2022.

Abstract

Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.

摘要

多倍体被定义为生物体细胞中存在三套或更多套完整的染色体,它被认为是维管植物进化史上的一个关键驱动力,并且在几种作物的驯化过程中发挥了重要作用。在过去几十年里,通过用化学药剂诱导同源多倍体,人们人工培育出了具有重要经济价值物种的改良品种。对多种物种的研究表明,自然或人工多倍体化所产生的解剖学和生理学变化能够增强对非生物和生物胁迫的耐受性以及抗病性,这可能对植物生长和净产量产生积极影响。这项工作的目的是回顾当前有关植物倍性水平与对非生物和生物胁迫耐受性之间联系的文献,重点关注造成这些影响的生理和分子机制,以及在暴露于不利环境条件下,它们对天然和人工产生的多倍体生长和发育的影响。我们着重分析了那些在涉及的假定形态生理和/或分子机制的认识方面取得了更多进展的胁迫类型,揭示了共同因素以及未来研究中需要解决的因素。

相似文献

1
Impact of polyploidy on plant tolerance to abiotic and biotic stresses.
Front Plant Sci. 2022 Aug 22;13:869423. doi: 10.3389/fpls.2022.869423. eCollection 2022.
2
The polyploidy and its key role in plant breeding.
Planta. 2016 Feb;243(2):281-96. doi: 10.1007/s00425-015-2450-x. Epub 2015 Dec 29.
3
Polyploidization: A Biological Force That Enhances Stress Resistance.
Int J Mol Sci. 2024 Feb 6;25(4):1957. doi: 10.3390/ijms25041957.
4
Whole genome duplications in plants: an overview from Arabidopsis.
J Exp Bot. 2015 Dec;66(22):6991-7003. doi: 10.1093/jxb/erv432. Epub 2015 Sep 28.
5
Enhancement of Plant Productivity in the Post-Genomics Era.
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
7
Synthetic Polyploidy in Grafted Crops.
Front Plant Sci. 2020 Nov 5;11:540894. doi: 10.3389/fpls.2020.540894. eCollection 2020.
10
Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.
J Exp Bot. 2016 Mar;67(7):2025-37. doi: 10.1093/jxb/erw079. Epub 2016 Mar 1.

引用本文的文献

1
How drought and ploidy level shape gene expression and DNA methylation in Phragmites australis.
Plant Cell Rep. 2025 Aug 12;44(9):197. doi: 10.1007/s00299-025-03585-9.
2
Polyploidy promotes transformation of epithelial cells into nonprofessional phagocytes.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2427293122. doi: 10.1073/pnas.2427293122. Epub 2025 Jul 22.
3
Causes of heterozygosity excess: The case of Mexican populations of .
Plant Divers. 2024 Dec 31;47(3):415-428. doi: 10.1016/j.pld.2024.12.006. eCollection 2025 May.
5
Polyploidy drives changes in tissue allocation modifying whole-plant water relations.
Plant Physiol. 2025 Mar 1;197(3). doi: 10.1093/plphys/kiaf079.
8
Machine Learning-Aided Optimization of In Vitro Tetraploid Induction in Cannabis.
Int J Mol Sci. 2025 Feb 18;26(4):1746. doi: 10.3390/ijms26041746.
10
Genome-wide identification and expression analysis of GRAS transcription factors under cold stress in diploid and triploid .
Front Genet. 2025 Jan 29;16:1436285. doi: 10.3389/fgene.2025.1436285. eCollection 2025.

本文引用的文献

1
Physiological and Transcriptome Analysis on Diploid and Polyploid Kom. under Salt Stress.
Int J Mol Sci. 2022 Jul 7;23(14):7529. doi: 10.3390/ijms23147529.
2
Polyploidy and microbiome associations mediate similar responses to pathogens in Arabidopsis.
Curr Biol. 2022 Jun 20;32(12):2719-2729.e5. doi: 10.1016/j.cub.2022.05.015. Epub 2022 May 30.
4
5
Genomic and Meiotic Changes Accompanying Polyploidization.
Plants (Basel). 2022 Jan 3;11(1):125. doi: 10.3390/plants11010125.
6
Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress.
BMC Plant Biol. 2022 Jan 3;22(1):8. doi: 10.1186/s12870-021-03375-x.
10
DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2023981118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验