López-Jurado Javier, Bourbia Ibrahim, Brodribb Timothy J
School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia.
Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain.
Plant Physiol. 2025 Mar 1;197(3). doi: 10.1093/plphys/kiaf079.
Polyploid plants often display functional trait values distinct from those of diploids, influencing their stress tolerance and adaptive capacity. These differences shape how polyploids interact with their environment, a factor that is crucial to their evolutionary success. Here, we investigated the species complex Dianthus broteri, where ploidy level is known to correlate with water availability, as a model system to understand the possible link between ploidy and whole-plant water relations. We quantified allocation between leaves, xylem, and roots in 4 different ploidies of D. broteri (2×, 4×, 6×, 12×), and examined its relationship with hydraulic efficiency (Kr-s), water potential regulation, and stomatal conductance (gc) in response to varying leaf-to-air vapor pressure deficits (VPDL). A gradient in tissue allocation with increasing ploidy led to contrasting water-use strategies within D. broteri. Higher ploidy was associated with greater allocation to roots and xylem, resulting in higher Kr-s and gc and lower water potential gradients. Despite these differences, gc responses to VPDL were largely consistent across ploidies. In D. broteri 12×, the significant investment in water uptake and transport without a proportional increase in leaf area appeared suboptimal, incurring high xylem costs per unit water transport. However, this trade-off also led to increased water uptake and transport efficiency, potentially advantageous under water-limited conditions. Overall, our results indicate that multiple rounds of genome duplication cause substantial changes in whole-plant water relations, likely impacting water stress exposure in the field.
多倍体植物通常表现出与二倍体不同的功能性状值,影响它们的胁迫耐受性和适应能力。这些差异塑造了多倍体与环境相互作用的方式,这是它们进化成功的关键因素。在这里,我们研究了石竹属的物种复合体布氏石竹,已知其倍性水平与水分可利用性相关,将其作为一个模型系统来理解倍性与整株植物水分关系之间的可能联系。我们量化了布氏石竹4种不同倍性(2x、4x、6x、12x)的叶片、木质部和根之间的分配,并研究了其与水力效率(Kr-s)、水势调节和气孔导度(gc)之间的关系,以响应不同的叶-气蒸汽压差(VPDL)。随着倍性增加,组织分配出现梯度变化,导致布氏石竹内部形成了截然不同的水分利用策略。较高的倍性与对根和木质部的更大分配相关,导致更高的Kr-s和gc以及更低的水势梯度。尽管存在这些差异,但气孔导度对VPDL的响应在不同倍性之间基本一致。在12x的布氏石竹中,对水分吸收和运输的大量投入而叶面积没有相应增加,这似乎并不理想,导致单位水分运输的木质部成本很高。然而,这种权衡也导致了水分吸收和运输效率的提高,在水分有限的条件下可能具有优势。总体而言,我们的结果表明,多轮基因组复制会导致整株植物水分关系发生重大变化,可能会影响田间的水分胁迫暴露情况。