State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China.
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2023981118.
Polyploidy is a prominent feature for genome evolution in many animals and all flowering plants. Plant polyploids often show enhanced fitness in diverse and extreme environments, but the molecular basis for this remains elusive. Soil salinity presents challenges for many plants including agricultural crops. Here we report that salt tolerance is enhanced in tetraploid rice through lower sodium uptake and correlates with epigenetic regulation of jasmonic acid (JA)-related genes. Polyploidy induces DNA hypomethylation and potentiates genomic loci coexistent with many stress-responsive genes, which are generally associated with proximal transposable elements (TEs). Under salt stress, the stress-responsive genes including those in the JA pathway are more rapidly induced and expressed at higher levels in tetraploid than in diploid rice, which is concurrent with increased jasmonoyl isoleucine (JA-Ile) content and JA signaling to confer stress tolerance. After stress, elevated expression of stress-responsive genes in tetraploid rice can induce hypermethylation and suppression of the TEs adjacent to stress-responsive genes. These induced responses are reproducible in a recurring round of salt stress and shared between two tetraploid rice lines. The data collectively suggest a feedback relationship between polyploidy-induced hypomethylation in rapid and strong stress response and stress-induced hypermethylation to repress proximal TEs and/or TE-associated stress-responsive genes. This feedback regulation may provide a molecular basis for selection to enhance adaptation of polyploid plants and crops during evolution and domestication.
多倍体是许多动物和所有开花植物基因组进化的一个显著特征。植物多倍体在多样化和极端环境中通常表现出增强的适应性,但这种分子基础仍然难以捉摸。土壤盐度对包括农作物在内的许多植物构成挑战。在这里,我们报告说,四倍体水稻通过减少钠离子吸收来提高耐盐性,这与茉莉酸(JA)相关基因的表观遗传调控有关。多倍体诱导 DNA 低甲基化,并增强与许多应激响应基因共存的基因组位点,这些基因通常与近端转座元件(TE)相关。在盐胁迫下,应激响应基因,包括 JA 途径中的基因,在四倍体水稻中的诱导和表达速度比在二倍体水稻中更快更高,这与增加茉莉酰异亮氨酸(JA-Ile)含量和 JA 信号传导以赋予耐盐性有关。胁迫后,四倍体水稻中应激响应基因的高表达可诱导邻近应激响应基因的 TEs 发生超甲基化和抑制。这些在重复的盐胁迫循环中可重现的诱导反应,在两个四倍体水稻系之间是共享的。这些数据共同表明,多倍体诱导的快速和强烈应激反应中的低甲基化与应激诱导的邻近 TE 和/或 TE 相关应激响应基因的高甲基化之间存在反馈关系。这种反馈调节可能为选择提供分子基础,以增强多倍体植物和作物在进化和驯化过程中的适应性。