文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MGA-YOLO:一种用于苹果叶部病害检测的轻量级单阶段网络。

MGA-YOLO: A lightweight one-stage network for apple leaf disease detection.

作者信息

Wang Yiwen, Wang Yaojun, Zhao Jingbo

机构信息

College of Information and Electrical Engineering, China Agricultural University, Beijing, China.

出版信息

Front Plant Sci. 2022 Aug 22;13:927424. doi: 10.3389/fpls.2022.927424. eCollection 2022.


DOI:10.3389/fpls.2022.927424
PMID:36072327
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9441945/
Abstract

Apple leaf diseases seriously damage the yield and quality of apples. Current apple leaf disease diagnosis methods primarily rely on human visual inspection, which often results in low efficiency and insufficient accuracy. Many computer vision algorithms have been proposed to diagnose apple leaf diseases, but most of them are designed to run on high-performance GPUs. This potentially limits their application in the field, in which mobile devices are expected to be used to perform computer vision-based disease diagnosis on the spot. In this paper, we propose a lightweight one-stage network, called the Mobile Ghost Attention YOLO network (MGA-YOLO), which enables real-time diagnosis of apple leaf diseases on mobile devices. We also built a dataset, called the Apple Leaf Disease Object Detection dataset (ALDOD), that contains 8,838 images of healthy and infected apple leaves with complex backgrounds, collected from existing public datasets. In our proposed model, we replaced the ordinary convolution with the Ghost module to significantly reduce the number of parameters and floating point operations (FLOPs) due to cheap operations of the Ghost module. We then constructed the Mobile Inverted Residual Bottleneck Convolution and integrated the Convolutional Block Attention Module (CBAM) into the YOLO network to improve its performance on feature extraction. Finally, an extra prediction head was added to detect extra large objects. We tested our method on the ALDOD testing set. Results showed that our method outperformed other state-of-the-art methods with the highest of 89.3%, the smallest model size of only 10.34 MB and the highest frames per second (FPS) of 84.1 on the GPU server. The proposed model was also tested on a mobile phone, which achieved 12.5 FPS. In addition, by applying image augmentation techniques on the dataset, of our method was further improved to 94.0%. These results suggest that our model can accurately and efficiently detect apple leaf diseases and can be used for real-time detection of apple leaf diseases on mobile devices.

摘要

苹果叶病害严重损害苹果的产量和品质。当前苹果叶病害诊断方法主要依靠人工目视检查,这往往导致效率低下且准确性不足。已经提出了许多计算机视觉算法来诊断苹果叶病害,但它们大多设计为在高性能GPU上运行。这可能限制了它们在现场的应用,在现场预计使用移动设备进行基于计算机视觉的病害诊断。在本文中,我们提出了一种轻量级的单阶段网络,称为移动幽灵注意力YOLO网络(MGA-YOLO),它能够在移动设备上实时诊断苹果叶病害。我们还构建了一个数据集,称为苹果叶病害目标检测数据集(ALDOD),该数据集包含从现有公共数据集中收集的8838张具有复杂背景的健康和感染苹果叶图像。在我们提出的模型中,我们用Ghost模块替换了普通卷积,由于Ghost模块的廉价操作,显著减少了参数数量和浮点运算(FLOPs)。然后我们构建了移动倒置残差瓶颈卷积,并将卷积块注意力模块(CBAM)集成到YOLO网络中,以提高其特征提取性能。最后,添加了一个额外的预测头来检测超大物体。我们在ALDOD测试集上测试了我们的方法。结果表明,我们的方法优于其他现有方法,在GPU服务器上最高准确率为89.3%,最小模型大小仅为10.34MB,最高每秒帧数(FPS)为84.1。所提出的模型也在手机上进行了测试,实现了12.5 FPS。此外,通过在数据集上应用图像增强技术,我们方法的准确率进一步提高到了94.0%。这些结果表明,我们的模型能够准确有效地检测苹果叶病害,可用于移动设备上苹果叶病害的实时检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/2a6804103809/fpls-13-927424-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/e0d1d124b0e6/fpls-13-927424-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/a7febbb66dad/fpls-13-927424-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/af1a962ab996/fpls-13-927424-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/c00aedef9b3d/fpls-13-927424-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/27d988f8f999/fpls-13-927424-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/333882e07889/fpls-13-927424-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/bf95c56aa9aa/fpls-13-927424-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/52b550037394/fpls-13-927424-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/277c91bb253e/fpls-13-927424-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/4194fa893b7c/fpls-13-927424-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/2a6804103809/fpls-13-927424-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/e0d1d124b0e6/fpls-13-927424-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/a7febbb66dad/fpls-13-927424-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/af1a962ab996/fpls-13-927424-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/c00aedef9b3d/fpls-13-927424-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/27d988f8f999/fpls-13-927424-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/333882e07889/fpls-13-927424-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/bf95c56aa9aa/fpls-13-927424-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/52b550037394/fpls-13-927424-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/277c91bb253e/fpls-13-927424-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/4194fa893b7c/fpls-13-927424-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b2/9441945/2a6804103809/fpls-13-927424-g0011.jpg

相似文献

[1]
MGA-YOLO: A lightweight one-stage network for apple leaf disease detection.

Front Plant Sci. 2022-8-22

[2]
EADD-YOLO: An efficient and accurate disease detector for apple leaf using improved lightweight YOLOv5.

Front Plant Sci. 2023-2-23

[3]
ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases.

Front Plant Sci. 2023-8-17

[4]
LSR-YOLO: A High-Precision, Lightweight Model for Sheep Face Recognition on the Mobile End.

Animals (Basel). 2023-5-31

[5]
YOLO-LWNet: A Lightweight Road Damage Object Detection Network for Mobile Terminal Devices.

Sensors (Basel). 2023-3-20

[6]
A method of detecting apple leaf diseases based on improved convolutional neural network.

PLoS One. 2022

[7]
YOLO-Granada: a lightweight attentioned Yolo for pomegranates fruit detection.

Sci Rep. 2024-7-22

[8]
Research of segmentation recognition of small disease spots on apple leaves based on hybrid loss function and CBAM.

Front Plant Sci. 2023-6-6

[9]
Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model.

Plants (Basel). 2023-8-23

[10]
YOLOV5-CBAM-C3TR: an optimized model based on transformer module and attention mechanism for apple leaf disease detection.

Front Plant Sci. 2024-1-15

引用本文的文献

[1]
ALD-YOLO: a lightweight attention detection model for apple leaf diseases.

Front Plant Sci. 2025-7-30

[2]
Enhancing the dataset of CycleGAN-M and YOLOv8s-KEF for identifying apple leaf diseases.

PLoS One. 2025-5-30

[3]
An advanced deep learning method for pepper diseases and pests detection.

Plant Methods. 2025-5-26

[4]
Detection of Apple Leaf Diseases Based on LightYOLO-AppleLeafDx.

Plants (Basel). 2025-2-17

[5]
Breeding species for resistance to disease in the Iberian Peninsula.

Front Plant Sci. 2024-12-9

[6]
LCGSC-YOLO: a lightweight apple leaf diseases detection method based on LCNet and GSConv module under YOLO framework.

Front Plant Sci. 2024-10-31

[7]
Precision agriculture with YOLO-Leaf: advanced methods for detecting apple leaf diseases.

Front Plant Sci. 2024-10-15

[8]
YOLO-ACT: an adaptive cross-layer integration method for apple leaf disease detection.

Front Plant Sci. 2024-10-1

[9]
Lightweight cotton diseases real-time detection model for resource-constrained devices in natural environments.

Front Plant Sci. 2024-6-6

[10]
Robust diagnosis and meta visualizations of plant diseases through deep neural architecture with explainable AI.

Sci Rep. 2024-6-13

本文引用的文献

[1]
Identification of Apple Leaf Diseases by Improved Deep Convolutional Neural Networks With an Attention Mechanism.

Front Plant Sci. 2021-9-28

[2]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索