基于YOLO-Leaf的精准农业:检测苹果叶部病害的先进方法

Precision agriculture with YOLO-Leaf: advanced methods for detecting apple leaf diseases.

作者信息

Li Tong, Zhang Liyuan, Lin Jianchu

机构信息

College of Agriculture and Forestry Economics and Management, Lanzhou University of Finance and Economics, Lanzhou, China.

Huaiyin Institute of Technology, Huai'an, China.

出版信息

Front Plant Sci. 2024 Oct 15;15:1452502. doi: 10.3389/fpls.2024.1452502. eCollection 2024.

Abstract

The detection of apple leaf diseases plays a crucial role in ensuring crop health and yield. However, due to variations in lighting and shadow, as well as the complex relationships between perceptual fields and target scales, current detection methods face significant challenges. To address these issues, we propose a new model called YOLO-Leaf. Specifically, YOLO-Leaf utilizes Dynamic Snake Convolution (DSConv) for robust feature extraction, employs BiFormer to enhance the attention mechanism, and introduces IF-CIoU to improve bounding box regression for increased detection accuracy and generalization ability. Experimental results on the FGVC7 and FGVC8 datasets show that YOLO-Leaf significantly outperforms existing models in terms of detection accuracy, achieving mAP50 scores of 93.88% and 95.69%, respectively. This advancement not only validates the effectiveness of our approach but also highlights its practical application potential in agricultural disease detection.

摘要

苹果叶部病害的检测对于确保作物健康和产量起着至关重要的作用。然而,由于光照和阴影的变化,以及感知域与目标尺度之间的复杂关系,当前的检测方法面临着重大挑战。为了解决这些问题,我们提出了一种名为YOLO-Leaf的新模型。具体而言,YOLO-Leaf利用动态蛇形卷积(DSConv)进行稳健的特征提取,采用BiFormer增强注意力机制,并引入IF-CIoU改进边界框回归,以提高检测精度和泛化能力。在FGVC7和FGVC8数据集上的实验结果表明,YOLO-Leaf在检测精度方面显著优于现有模型,mAP50分数分别达到93.88%和95.69%。这一进展不仅验证了我们方法的有效性,还突出了其在农业病害检测中的实际应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f4e/11518753/b0cfafdd7ec6/fpls-15-1452502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索