Department of Environmental Technology, College of Environmental Science and Technology, University of Mosul, Mosul, Iraq.
Avi-Cenna E-learning Center, University of Baghdad, Baghdad, Iraq.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2022;57(9):813-829. doi: 10.1080/10934529.2022.2117960. Epub 2022 Sep 8.
Advanced oxidation processes (AOPs) have gained traction as alternative solutions for eliminating pollutants from pharmaceutical wastewater for reuse. In this research, the performance of two photo-catalysts (Commercial TiO and synthesis N-doped TiO) were compared in terms of the degradation of amoxicillin and ciprofloxacin from an aqueous solution using a photo-catalytic batch system under solar irradiation. The influence of five operating factors is: pH (5-11), HO concentrations (200-600) mg/L, catalyst concentrations (25-100 mg/L), Antibiotic concentration (25-100) mg/L and reaction time (30-120 min), on the oxidation of the listed above pollutants were investigated using the central composite design (CCD) of response surface methodology (RSM). The catalyst of N-doping TiO was synthesized by sol-gel method, using the urea (CHNO) as a nitrogen source. The resulting material was analyzed using Scanning Electron Microscopy (SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Additionally, it can be observed from the analysis of the characteristics of N-doped TiO the homogenous dispersion of nitrogen molecules, small particle sizes, and energy-gap reduction, prompting a 6% increase in antibiotic degradation compared with Com. TiO. In the RSM analysis, the ideal conditions were found to be a pH of 5, HO conc. of 400 mg/L, catalyst conc. of 50 mg, and antibiotics conc. of 25 mg/L for an antibiotics reduction rate of 89.31% (AMOX/Com. TiO/Solar), 90.2 (CFX/Com. TiO/Solar), 95.8% (AMOX/N-TiO/Solar) and 97.3% (CFX/N-TiO/Solar). Experimental results were in good agreement with predictions because the predicted R matched well with the adjusted R.
高级氧化工艺(AOPs)作为去除医药废水中污染物以实现再利用的替代解决方案已经引起了关注。在这项研究中,比较了两种光催化剂(商业 TiO 和合成 N 掺杂 TiO)在太阳能照射下的光催化批处理系统中,从水溶液中降解阿莫西林和环丙沙星的性能。通过响应面法(RSM)的中心复合设计(CCD)研究了五种操作因素(pH 值(5-11)、HO 浓度(200-600)mg/L、催化剂浓度(25-100mg/L)、抗生素浓度(25-100mg/L)和反应时间(30-120min))对上述污染物氧化的影响。N 掺杂 TiO 的催化剂是通过溶胶-凝胶法合成的,使用尿素(CHNO)作为氮源。使用扫描电子显微镜(SEM)、X 射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对所得材料进行了分析。此外,从 N 掺杂 TiO 的特性分析可以看出,氮分子均匀分散、粒径小、能隙降低,与 Com. TiO 相比,抗生素降解率提高了 6%。在 RSM 分析中,发现理想条件为 pH 值为 5、HO 浓度为 400mg/L、催化剂浓度为 50mg/L 和抗生素浓度为 25mg/L,抗生素去除率分别为 89.31%(AMOX/Com. TiO/Solar)、90.2%(CFX/Com. TiO/Solar)、95.8%(AMOX/N-TiO/Solar)和 97.3%(CFX/N-TiO/Solar)。实验结果与预测结果吻合较好,因为预测的 R 与调整后的 R 吻合较好。