Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India.
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.
Bioconjug Chem. 2022 Sep 21;33(9):1761-1770. doi: 10.1021/acs.bioconjchem.2c00355. Epub 2022 Sep 8.
Peptide toxins secreted by venomous animals bind to mammalian ion channel proteins and modulate their function. The high specificity of these toxins for their target ion channels enables them to serve as powerful tools for ion channel biology. Toxins labeled with fluorescent dyes are employed for the cellular imaging of channels and also for studying toxin-channel and toxin-membrane interactions. Several of these toxins are cysteine-rich, rendering the production of properly folded fluorescently labeled toxins technically challenging. Herein, we evaluate a variety of site-specific protein bioconjugation approaches for producing fluorescently labeled double-knot toxin (DkTx), a potent TRPV1 ion channel agonist that contains an uncommonly large number of cysteines (12 out of a total of 75 amino acids present in the protein). We find that popular cysteine-mediated bioconjugation approaches are unsuccessful as the introduction of a non-native cysteine residue for thiol modification leads to the formation of misfolded toxin species. Moreover, -terminal aldehyde-mediated bioconjugation approaches are also not suitable as the resultant labeled toxin lacks activity. In contrast to these approaches, -terminal bioconjugation of DkTx via the sortase bioconjugation technology yields functionally active fluorescently labeled DkTx. We employ this labeled toxin for imaging rat TRPV1 heterologously expressed in oocytes, as well as for performing membrane binding studies on giant unilamellar vesicles composed of different lipid compositions. Our studies set the stage for using fluorescent DkTx as a tool for TRPV1 biology and provide an informative blueprint for labeling cysteine-rich proteins.
由毒液动物分泌的肽毒素与哺乳动物离子通道蛋白结合,并调节其功能。这些毒素对其靶离子通道具有高度特异性,使它们成为离子通道生物学的强大工具。用荧光染料标记的毒素用于通道的细胞成像,也用于研究毒素-通道和毒素-膜相互作用。其中一些毒素富含半胱氨酸,这使得正确折叠的荧光标记毒素的生产在技术上具有挑战性。在此,我们评估了各种用于生产荧光标记的双结毒素(DkTx)的定点蛋白生物偶联方法,DkTx 是一种有效的 TRPV1 离子通道激动剂,它含有大量的半胱氨酸(在该蛋白的 75 个氨基酸中,有 12 个)。我们发现,常用的半胱氨酸介导的生物偶联方法是不成功的,因为引入非天然半胱氨酸残基进行巯基修饰会导致错误折叠的毒素形成。此外,末端醛介导的生物偶联方法也不适用,因为所得标记的毒素没有活性。与这些方法相反,通过 Sortase 生物偶联技术对 DkTx 的末端进行生物偶联可产生具有功能活性的荧光标记 DkTx。我们将这种标记的毒素用于在卵母细胞中异源表达的大鼠 TRPV1 的成像,以及用于对由不同脂质组成的巨大单层囊泡进行膜结合研究。我们的研究为使用荧光 DkTx 作为 TRPV1 生物学的工具奠定了基础,并为富含半胱氨酸的蛋白质的标记提供了一个有价值的蓝图。