Suppr超能文献

基于全身炎症标志物的列线图可预测心力衰竭患者的不良结局

[A nomogram based on systemic inflammation markers can predict adverse outcomes in patients with heart failure].

作者信息

Liu Z, Zhou X

机构信息

Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2022 Aug 20;42(8):1149-1158. doi: 10.12122/j.issn.1673-4254.2022.08.06.

Abstract

OBJECTIVE

To construct a nomogram based on systemic inflammation markers for assessing the risk of adverse outcomes in patients with heart failure (HF).

METHODS

We retrospectively collected the clinical data from 430 patients with HF hospitalized in our hospital from June, 2017 to June, 2019.The patients were randomized into derivation group (=286) and validation group (=144) at a 7:3 ratio using R software.The risk factors for adverse prognosis of HF were screened using COX regression analysis to establish the nomogram.The predictive accuracy of the nomogram was assessed using calibration curves.Decision curve analysis (DCA) and Kaplan-Meier curves were used to evaluate the clinical utility of the nomogram.

RESULTS

The results of COX multivariate regression analysis showed that age (=0.030), body mass index (BMI, =0.002), New York Heart Association classification (NYHA, < 0.001), hypertension (=0.004), lymphocyte count ( < 0.001), platelet-to-lymphocyte ratio (PLR, =0.007), neutrophil-to-lymphocyte ratio (NLR, < 0.001) and system inflammation response index (SIRI, < 0.001) were prognostic factors for HF patients.The nomogram was constructed using these prognostic factors.The C-indexes of the derivation and validation cohorts were 0.719(95%: 0.680-0.758) and 0.732(95%: 0.693-0.771), respectively.The calibration curves showed a good concordance of the nomogram for predicting adverse outcomes in patients with HF.

CONCLUSION

The nomogram constructed based on the systemic inflammation markers and the conventional risk factors can predict adverse outcomes (mortality and readmission) in patients with HF.

摘要

目的

构建基于全身炎症标志物的列线图,用于评估心力衰竭(HF)患者不良结局的风险。

方法

回顾性收集2017年6月至2019年6月在我院住院的430例HF患者的临床资料。使用R软件按7:3的比例将患者随机分为推导组(n = 286)和验证组(n = 144)。采用COX回归分析筛选HF不良预后的危险因素,以建立列线图。使用校准曲线评估列线图的预测准确性。采用决策曲线分析(DCA)和Kaplan-Meier曲线评估列线图的临床实用性。

结果

COX多因素回归分析结果显示,年龄(P = 0.030)、体重指数(BMI,P = 0.002)、纽约心脏协会分级(NYHA,P < 0.001)、高血压(P = 0.004)、淋巴细胞计数(P < 0.001)、血小板与淋巴细胞比值(PLR,P = 0.007)、中性粒细胞与淋巴细胞比值(NLR,P < 0.001)和全身炎症反应指数(SIRI,P < 0.001)是HF患者的预后因素。利用这些预后因素构建了列线图。推导队列和验证队列的C指数分别为0.719(95%CI:0.680 - 0.758)和0.732(95%CI:0.693 - 0.771)。校准曲线显示列线图在预测HF患者不良结局方面具有良好的一致性。

结论

基于全身炎症标志物和传统危险因素构建的列线图可预测HF患者的不良结局(死亡率和再入院率)。

相似文献

本文引用的文献

7
Role of gender, age and BMI in prognosis of heart failure.性别、年龄和 BMI 在心力衰竭预后中的作用。
Eur J Prev Cardiol. 2020 Dec;27(2_suppl):46-51. doi: 10.1177/2047487320961980.
9
Inflammation in Heart Failure: JACC State-of-the-Art Review.心力衰竭中的炎症:JACC 最新综述。
J Am Coll Cardiol. 2020 Mar 24;75(11):1324-1340. doi: 10.1016/j.jacc.2020.01.014.
10
Reappraising the role of inflammation in heart failure.重新评估炎症在心力衰竭中的作用。
Nat Rev Cardiol. 2020 May;17(5):269-285. doi: 10.1038/s41569-019-0315-x. Epub 2020 Jan 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验