Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
Mater Horiz. 2022 Nov 28;9(12):2984-2992. doi: 10.1039/d2mh00787h.
Metasurfaces with a strongly enhanced local field are envisioned as a powerful platform for ultrasensitive optical sensors to significantly amplify imperceptible differences between compatible bioanalytes. Through the use of phototunable silicon-based terahertz (THz) metasurfaces, we experimentally demonstrate ultrafast switchable sensing functions. It is found that the THz responses of the coupled-resonances in the metasurfaces shift from Lorentz-lattice mode to electromagnetism-induced transparency (EIT) mode under optical pumping within an ultrashort time of 32 ps, enabling an ultrafast sensitive sensor. For the Lorentz-lattice mode, the THz time-domain signal directly shows a highly sensitive response to detect tiny analytes without extra Fourier transformation as the mismatch between the two modes increases. Once the metasurfaces are switched to the EIT mode, the silicon-metal hybrid structure supports frequency-domain sensing ability due to strong field confinement with a sensitivity of 118.4 GHz/RIU. Both of the sensing configurations contribute to more subtle information and guarantee the accuracy of the sensor performance. Combined with the aforementioned advantages, the proposed metasurfaces have successfully identified colorectal cells between normal, adenoma, and cancer states in experiments. This work furnishes a new paradigm of constructing reliable and flexible metasurface sensors and can be extended to other optics applications.
超材料中的局域场得到了极大增强,被视为超灵敏光学传感器的强大平台,可以显著放大兼容生物分析物之间难以察觉的差异。通过使用光可调谐的硅基太赫兹 (THz) 超材料,我们实验演示了超快可切换的传感功能。研究发现,在光泵浦下,超材料中的耦合共振的 THz 响应在 32 ps 的超短时间内从洛伦兹晶格模式转变为电磁感应透明 (EIT) 模式,从而实现了超快灵敏传感器。对于洛伦兹晶格模式,THz 时域信号直接对检测微小分析物做出高度灵敏的响应,无需额外的傅里叶变换,因为两种模式之间的不匹配会增加。一旦超材料切换到 EIT 模式,由于强场限制,硅-金属混合结构支持频域传感能力,灵敏度为 118.4 GHz/RIU。这两种传感配置都有助于提供更细微的信息,并保证传感器性能的准确性。结合上述优势,所提出的超材料在实验中成功地识别了正常、腺瘤和癌症状态之间的结直肠细胞。这项工作为构建可靠和灵活的超材料传感器提供了新的范例,并可以扩展到其他光学应用。