Suppr超能文献

基于指南的黑色素瘤患者情境敏感决策建模。

Guideline-Based Context-Sensitive Decision Modeling for Melanoma Patients.

机构信息

Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), 44227 Dortmund, Germany.

Department of Dermatology, Venereology and Allergology, University Hospital Essen, 45147 Essen, Germany.

出版信息

Stud Health Technol Inform. 2022 Aug 17;296:50-57. doi: 10.3233/SHTI220803.

Abstract

INTRODUCTION

The provision of knowledge through clinical practice guidelines and hospital-specific standard operating procedures (SOPs) is ubiquitous in the medical context and in the treatment of melanoma patients. However, these knowledge sources are only available in unstructured text form and without any contextual link to real patient data. The aim of our project is to give a modeled decision support for the next treatment step based on the actual data and position of a patient.

METHODS

First, we identified passages for qualified decision-making necessary at the point of care from the SOP for melanoma. Thereby, the patient-specific contextual reference data at decision points was considered in parallel and represented by FHIR (Fast Healthcare Interoperability Resource) resources. The decision algorithm was then formalized using BPMN modeling with FHIR annotations. Validation was provided by medical experts, dermatooncologists from University Hospital Essen.

RESULTS

The resulting BPMN model is presented here with the diagnostic procedure of sentinel lymph node excision as the example snippet from the whole algorithm. Each decision point is edited with FHIR resources covering the patient data and preparing the context sensitivity of the model.

CONCLUSION

Modeling guideline-based information into a decision algorithm that can be presented at the point of care with contextual reference, may have the potential to support patient-specific clinical decision-making. For patients from a certain status like in the metastatic setting modeling becomes highly tailored to specific patient cases, alternative and individualized treatment options.

摘要

简介

在医学背景下和治疗黑色素瘤患者时,通过临床实践指南和医院特定的标准操作程序(SOP)提供知识是很常见的。然而,这些知识来源仅以非结构化文本形式提供,并且与实际患者数据没有任何上下文链接。我们项目的目的是根据实际数据和患者的位置为下一步治疗提供建模决策支持。

方法

首先,我们从黑色素瘤的 SOP 中确定了在护理点进行有资格的决策所需的段落。在决策点同时考虑了患者特定的上下文参考数据,并通过 FHIR(快速医疗保健互操作性资源)资源表示。然后,使用带有 FHIR 注释的 BPMN 建模对决策算法进行形式化。由埃森大学医院的皮肤科肿瘤学家等医学专家进行验证。

结果

在此呈现生成的 BPMN 模型,以淋巴结切除术的诊断程序作为整个算法的示例片段。每个决策点都使用 FHIR 资源进行编辑,涵盖患者数据并为模型的上下文敏感性做好准备。

结论

将基于指南的信息建模成可在护理点呈现的决策算法,并带有上下文参考,可能有潜力支持特定于患者的临床决策。对于某些特定状态的患者,例如在转移性环境中,模型变得高度针对特定患者病例,提供替代和个性化的治疗选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验