Suppr超能文献

定量全基因组关联模型发现可解释的全基因组关联。

Quantitative omnigenic model discovers interpretable genome-wide associations.

机构信息

Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2402340121. doi: 10.1073/pnas.2402340121. Epub 2024 Oct 23.

Abstract

As their statistical power grows, genome-wide association studies (GWAS) have identified an increasing number of loci underlying quantitative traits of interest. These loci are scattered throughout the genome and are individually responsible only for small fractions of the total heritable trait variance. The recently proposed omnigenic model provides a conceptual framework to explain these observations by postulating that numerous distant loci contribute to each complex trait via effect propagation through intracellular regulatory networks. We formalize this conceptual framework by proposing the "quantitative omnigenic model" (QOM), a statistical model that combines prior knowledge of the regulatory network topology with genomic data. By applying our model to gene expression traits in yeast, we demonstrate that QOM achieves similar gene expression prediction performance to traditional GWAS with hundreds of times less parameters, while simultaneously extracting candidate causal and quantitative chains of effect propagation through the regulatory network for every individual gene. We estimate the fraction of heritable trait variance in and in , break the latter down by effect propagation order, assess the variance not attributable to transcriptional regulation, and show that QOM correctly accounts for the low-dimensional structure of gene expression covariance. We furthermore demonstrate the relevance of QOM for systems biology, by employing it as a statistical test for the quality of regulatory network reconstructions, and linking it to the propagation of nontranscriptional (including environmental) effects.

摘要

随着统计能力的增强,全基因组关联研究 (GWAS) 已经确定了越来越多与感兴趣的数量性状相关的基因座。这些基因座分布在整个基因组中,每个基因座单独只对总可遗传性状方差的一小部分负责。最近提出的全能基因模型通过假设许多遥远的基因座通过细胞内调控网络的效应传递对每个复杂性状产生影响,为解释这些观察结果提供了一个概念框架。我们通过提出“定量全能基因模型”(QOM)来形式化这个概念框架,这是一个将调控网络拓扑结构的先验知识与基因组数据相结合的统计模型。通过将我们的模型应用于酵母中的基因表达性状,我们证明 QOM 可以实现与传统 GWAS 相当的基因表达预测性能,而参数却少了数百倍,同时为每个基因提取通过调控网络进行效应传递的候选因果和定量链。我们估计了 和 中的可遗传性状方差分数,按效应传递顺序对后者进行了细分,评估了不能归因于转录调控的 方差,并表明 QOM 正确地解释了基因表达协方差的低维结构。我们还通过将其用作调控网络重建质量的统计检验,并将其与非转录(包括环境)效应的传递联系起来,展示了 QOM 对系统生物学的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb61/11536075/3631a9f362d8/pnas.2402340121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验