文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自分割型跨细胞纳米覆盆子用于近红外二区光免疫代谢癌症治疗深部肿瘤组织。

Self-Splittable Transcytosis Nanoraspberry for NIR-II Photo-Immunometabolic Cancer Therapy in Deep Tumor Tissue.

机构信息

Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China.

Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.

出版信息

Adv Sci (Weinh). 2022 Nov;9(32):e2204067. doi: 10.1002/advs.202204067. Epub 2022 Sep 8.


DOI:10.1002/advs.202204067
PMID:36073839
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9661837/
Abstract

Cancer photo-immunotherapy (CPIT) as an ideal strategy can rapidly release hostile signals by appropriate dosage of focal laser irradiation to unmask primary tumor immunogenicity and can activate adaptive immunity to control distant metastases. However, many factors, including disordered immunometabolism, poor penetration of photothermal agents and immuno-regulators, inadequate laser penetration into the deep tumor region, restrict the therapeutic outcomes of CPIT. Here, a second near-infrared window (NIR-II) photo-immunometabolic cancer therapy (PICT) by a programmed raspberry-structured nanoadjuvant (PRN ) is presented that can potentiates efficient immunogenic cell death (ICD) in deep tumor tissue and alleviates immunometabolic disorder. The PRN is architected through self-assembly of indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor modified small-sized CuS nanoparticles (CuS ) and tumor microenvironment (TME) responsive cationized polymeric matrix. The TME can trigger the splitting and surface cationization of PRN into small cationized CuS that feature high transcytosis potential and TME immunometabolic regulation. Upon NIR-II irradiation, CuS induce homogeneous ICD and release immunometabolic regulator in deep tumor tissues, which ameliorates IDO-1 mediated immunometabolic disorder and further suppresses regulatory T cells infiltration. PRN mediated PICT effectively delays the primary murine mammary carcinoma 4T1 tumor growth and inhibits the lethal pulmonary metastasis in combination with programmed cell death protein 1 (PD1) blockade.

摘要

癌症光免疫疗法(CPIT)是一种理想的策略,可以通过适当剂量的焦点激光照射迅速释放敌对信号,揭示原发性肿瘤的免疫原性,并激活适应性免疫以控制远处转移。然而,许多因素,包括免疫代谢紊乱、光热剂和免疫调节剂的渗透不良、激光对深部肿瘤区域的穿透不足,限制了 CPIT 的治疗效果。在这里,提出了一种通过编程树莓结构纳米佐剂(PRN)的二次近红外窗口(NIR-II)光免疫代谢癌症治疗(PICT),可以增强深部肿瘤组织中有效的免疫原性细胞死亡(ICD),并缓解免疫代谢紊乱。PRN 通过吲哚胺 2,3-双加氧酶 1(IDO-1)抑制剂修饰的小尺寸 CuS 纳米颗粒(CuS)和肿瘤微环境(TME)响应的阳离子聚合物基质的自组装构建而成。TME 可以触发 PRN 的分裂和表面阳离子化,形成具有高转胞作用和 TME 免疫代谢调节能力的小阳离子化 CuS。在 NIR-II 照射下,CuS 在深部肿瘤组织中诱导同质 ICD 并释放免疫代谢调节剂,改善 IDO-1 介导的免疫代谢紊乱,并进一步抑制调节性 T 细胞浸润。PRN 介导的 PICT 与程序性细胞死亡蛋白 1(PD1)阻断联合有效地延迟了原发性小鼠乳腺肿瘤 4T1 的生长,并抑制了致命的肺转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/c8e89568da2f/ADVS-9-2204067-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/e13f4cb96daa/ADVS-9-2204067-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/a080d8825469/ADVS-9-2204067-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/f22c63507e02/ADVS-9-2204067-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/4e539bba353c/ADVS-9-2204067-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/2c131a170f71/ADVS-9-2204067-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/37fbc81a9f7a/ADVS-9-2204067-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/c8e89568da2f/ADVS-9-2204067-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/e13f4cb96daa/ADVS-9-2204067-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/a080d8825469/ADVS-9-2204067-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/f22c63507e02/ADVS-9-2204067-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/4e539bba353c/ADVS-9-2204067-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/2c131a170f71/ADVS-9-2204067-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/37fbc81a9f7a/ADVS-9-2204067-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ea/9661837/c8e89568da2f/ADVS-9-2204067-g002.jpg

相似文献

[1]
Self-Splittable Transcytosis Nanoraspberry for NIR-II Photo-Immunometabolic Cancer Therapy in Deep Tumor Tissue.

Adv Sci (Weinh). 2022-11

[2]
Near-Infrared II Phototherapy Induces Deep Tissue Immunogenic Cell Death and Potentiates Cancer Immunotherapy.

ACS Nano. 2019-9-30

[3]
An Activatable Dual Polymer Nanosystem for Photoimmunotherapy and Metabolic Modulation of Deep-Seated Tumors.

Adv Healthc Mater. 2024-4

[4]
Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy.

Nat Commun. 2021-5-18

[5]
Self-delivery of metal-coordinated NIR-II nanoadjuvants for multimodal imaging-guided photothermal-chemodynamic amplified immunotherapy.

Acta Biomater. 2023-8

[6]
Multifunctional nanoparticles precisely reprogram the tumor microenvironment and potentiate antitumor immunotherapy after near-infrared-II light-mediated photothermal therapy.

Acta Biomater. 2023-9-1

[7]
Second Near-Infrared Light-Activatable Polymeric Nanoantagonist for Photothermal Immunometabolic Cancer Therapy.

Adv Mater. 2021-9

[8]
Metal-Coordinated NIR-II Nanoadjuvants with Nanobody Conjugation for Potentiating Immunotherapy by Tumor Metabolism Reprogramming.

Adv Sci (Weinh). 2024-9

[9]
Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate.

Biomaterials. 2021-11

[10]
Gold nanobipyramid@copper sulfide nanotheranostics for image-guided NIR-II photo/chemodynamic cancer therapy with enhanced immune response.

Acta Biomater. 2023-3-1

引用本文的文献

[1]
Photoactivatable immunomodulator polyprodrugs for boosting synergistic antitumor immunity of STING agonists and IDO inhibitors.

Theranostics. 2025-3-8

[2]
Supramolecular Modulation of Tumor Microenvironment Through Host-Guest Recognition and Metal Coordination to Potentiate Cancer Chemoimmunotherapy.

Adv Sci (Weinh). 2025-3

[3]
Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System.

J Funct Biomater. 2024-12-9

[4]
Cuproptosis: a promising new target for breast cancer therapy.

Cancer Cell Int. 2024-12-19

[5]
Turning foes to friends: Advanced " nanovaccine" with dual immunoregulation for enhanced immunotherapy of metastatic triple-negative breast cancer.

Bioact Mater. 2024-5-31

[6]
Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers.

Asian J Pharm Sci. 2024-2

[7]
Photothermal therapy of copper incorporated nanomaterials for biomedicine.

Biomater Res. 2023-11-24

[8]
Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer.

Nat Commun. 2023-9-14

[9]
Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment.

Bone Res. 2023-2-27

[10]
Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis.

Front Pharmacol. 2022-10-18

本文引用的文献

[1]
Peptide Aggregation Induced Immunogenic Rupture (PAIIR).

Adv Sci (Weinh). 2022-7

[2]
Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation.

Biomacromolecules. 2022-4-11

[3]
Remodeling Tumor-Associated Neutrophils to Enhance Dendritic Cell-Based HCC Neoantigen Nano-Vaccine Efficiency.

Adv Sci (Weinh). 2022-4

[4]
Smart Nano-PROTACs Reprogram Tumor Microenvironment for Activatable Photo-metabolic Cancer Immunotherapy.

Angew Chem Int Ed Engl. 2022-2-14

[5]
9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy.

Nat Commun. 2021-9-23

[6]
Nanomessenger-Mediated Signaling Cascade for Antitumor Immunotherapy.

ACS Nano. 2021-8-24

[7]
Indoleamine 2,3-dioxygenase (Ido) inhibitors and their nanomedicines for cancer immunotherapy.

Biomaterials. 2021-9

[8]
The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival.

Nat Commun. 2021-7-2

[9]
Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy.

Chem Sci. 2020-7-15

[10]
Immunogenic Cell Death Inducing Fluorinated Mitochondria-Disrupting Helical Polypeptide Synergizes with PD-L1 Immune Checkpoint Blockade.

Adv Sci (Weinh). 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索