Reichenbach Maria, Mendez Paul-Lennard, da Silva Madaleno Carolina, Ugorets Vladimir, Rikeit Paul, Boerno Stefan, Jatzlau Jerome, Knaus Petra
Institute of Chemistry/Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin, 14195, Germany.
International Max Planck Research School for Biology and Computation, Max Planck Institute for Molecular Genetics, Ihnestr. 63, Berlin, 14195, Germany.
Adv Biol (Weinh). 2021 Feb;5(2):e2000051. doi: 10.1002/adbi.202000051. Epub 2021 Jan 14.
Bone is a remarkable dynamic structure, which integrates mechanical and biochemical signaling inputs. Interstitial fluid in the intramedullary space transmits signals derived from compression-induced fluid shear stress (FSS) to stimulate osteoblasts for bone formation. Using a flow system and human osteoblasts, this study demonstrates how BMP/TGF-β signaling integrates stimuli derived from FSS and YAP/TAZ and confirms these findings by transcriptome analyses. Here, FSS positively affects the phosphorylation of both SMAD1/5 and SMAD2/3, the respective BMP- and TGFβ-R-SMADs. Increase in phosphorylated SMAD1/5 levels affects distinct target genes, which are susceptible to low levels of phosphorylated SMADs (such as ID1-3) or dependent on high levels of phosphorylated SMAD1/5 (NOG, noggin). Thus, FSS lowers the threshold for genes dependent on high levels of phosphorylated SMAD1/5 when less BMP is available. While the impact of FSS on direct BMP target genes is independent of YAP/TAZ, FSS acts cooperatively with YAP/TAZ on TGF-β target genes, which are shared by both pathways (such as CTGF). As mechanical stimuli are key in bone regeneration, their crosstalk to biochemical signaling pathways such as BMP and TGF-β and YAP/TAZ acts on different levels, which allows now to think about new and more specified intervention strategies for age-related bone loss.
骨骼是一种非凡的动态结构,它整合了机械和生化信号输入。骨髓腔内的组织液传递源自压缩诱导的流体剪切应力(FSS)的信号,以刺激成骨细胞进行骨形成。本研究使用流动系统和人成骨细胞,展示了骨形态发生蛋白/转化生长因子-β(BMP/TGF-β)信号如何整合源自FSS和Yes相关蛋白/具有PDZ结合基序的转录共激活因子(YAP/TAZ)的刺激,并通过转录组分析证实了这些发现。在这里,FSS对SMAD1/5和SMAD2/3的磷酸化均产生正向影响,它们分别是BMP和TGFβ受体的SMAD蛋白。磷酸化SMAD1/5水平的增加会影响不同的靶基因,这些靶基因对低水平的磷酸化SMAD蛋白敏感(如ID1-3)或依赖于高水平的磷酸化SMAD1/5(NOG,头蛋白)。因此,当骨形态发生蛋白较少时,FSS会降低依赖于高水平磷酸化SMAD1/5的基因的阈值。虽然FSS对直接的骨形态发生蛋白靶基因的影响独立于YAP/TAZ,但FSS与YAP/TAZ在TGF-β靶基因上协同作用,这两条途径共享这些靶基因(如结缔组织生长因子)。由于机械刺激在骨再生中起关键作用,它们与生化信号通路(如BMP和TGF-β以及YAP/TAZ)的相互作用在不同水平上发挥作用,这使得我们现在可以思考针对与年龄相关的骨质流失的新的和更具体的干预策略。