Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain.
Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
Cells. 2023 Sep 2;12(17):2200. doi: 10.3390/cells12172200.
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
骨形态发生蛋白 (BMP) 信号通路的紊乱会导致许多罕见的遗传疾病的发生和发展,包括进行性骨化性纤维发育不良 (FOP)、肺动脉高压 (PAH) 和遗传性出血性毛细血管扩张症 (HHT)。经过几十年的动物研究,为深入了解潜在的分子机制奠定了坚实的基础,基于 iPSC 的患者衍生模型的逐步实施将通过在复杂的人性化环境中解决药物疗效、特异性和毒性问题来改善药物开发。我们将在此领域回顾 iPSC 衍生模型系统的当前文献状态,特别强调获取患者源材料及其可能带来的并发症。鉴于 BMP 在胚胎发育和干细胞分化过程中的重要作用,BMP 信号通路中的获得性功能或失能性突变可能会影响 iPSC 的生成、维持和分化过程。本综述强调了需要仔细优化所使用的方案。最后,我们将讨论最近朝着复杂的体外培养模型发展的情况,这些模型旨在模拟具有多方面细胞输入的特定组织微环境,例如细胞力学和细胞外基质,以及类器官、器官芯片和微流控技术。