Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA, 02219, USA.
Department of Biostatistics, University of Kentucky College of Public Health, Lexington, USA.
Trials. 2022 Sep 8;23(1):762. doi: 10.1186/s13063-022-06708-9.
The HEALing (Helping to End Addiction Long-term) Communities Study (HCS) is a multi-site parallel group cluster randomized wait-list comparison trial designed to evaluate the effect of the Communities That Heal (CTH) intervention compared to usual care on opioid overdose deaths. Covariate-constrained randomization (CCR) was applied to balance the community-level baseline covariates in the HCS. The purpose of this paper is to evaluate the performance of model-based tests and permutation tests in the HCS setting. We conducted a simulation study to evaluate type I error rates and power for model-based and permutation tests for the multi-site HCS as well as for a subgroup analysis of a single state (Massachusetts). We also investigated whether the maximum degree of imbalance in the CCR design has an impact on the performance of the tests.
The primary outcome, the number of opioid overdose deaths, is count data assessed at the community level that will be analyzed using a negative binomial regression model. We conducted a simulation study to evaluate the type I error rates and power for 3 tests: (1) Wald-type t-test with small-sample corrected empirical standard error estimates, (2) Wald-type z-test with model-based standard error estimates, and (3) permutation test with test statistics calculated by the difference in average residuals for the two groups.
Our simulation results demonstrated that Wald-type t-tests with small-sample corrected empirical standard error estimates from the negative binomial regression model maintained proper type I error. Wald-type z-tests with model-based standard error estimates were anti-conservative. Permutation tests preserved type I error rates if the constrained space was not too small. For all tests, the power was high to detect the hypothesized 40% reduction in opioid overdose deaths for the intervention vs. comparison group both for the overall HCS and the subgroup analysis of Massachusetts (MA).
Based on the results of our simulation study, the Wald-type t-test with small-sample corrected empirical standard error estimates from a negative binomial regression model is a valid and appropriate approach for analyzing cluster-level count data from the HEALing Communities Study.
ClinicalTrials.gov http://www.
gov ; Identifier: NCT04111939.
HEALing(帮助长期戒毒)社区研究(HCS)是一项多地点平行组集群随机对照试验,旨在评估与常规护理相比,治疗社区(CTH)干预对阿片类药物过量死亡的影响。协变量约束随机化(CCR)用于平衡 HCS 中的社区水平基线协变量。本文旨在评估模型检验和置换检验在 HCS 环境中的性能。我们进行了一项模拟研究,以评估多地点 HCS 以及马萨诸塞州(MA)的亚组分析中模型检验和置换检验的Ⅰ类错误率和功效。我们还研究了 CCR 设计中最大不平衡程度是否会影响检验的性能。
主要结局指标,即阿片类药物过量死亡人数,是社区层面评估的计数数据,将使用负二项回归模型进行分析。我们进行了一项模拟研究,以评估 3 种检验的Ⅰ类错误率和功效:(1)具有小样本校正经验标准误差估计的 Wald 型 t 检验;(2)具有基于模型的标准误差估计的 Wald 型 z 检验;(3)通过两组平均残差差值计算检验统计量的置换检验。
我们的模拟结果表明,具有小样本校正经验标准误差估计的 Wald 型 t 检验从负二项回归模型中保持了适当的Ⅰ类错误率。基于模型的标准误差估计的 Wald 型 z 检验是反保守的。如果约束空间不是太小,置换检验可以保持Ⅰ类错误率。对于所有检验,对于干预组与对照组之间假设的 40%阿片类药物过量死亡减少,在整个 HCS 和马萨诸塞州(MA)的亚组分析中,功效都很高。
基于我们的模拟研究结果,具有小样本校正经验标准误差估计的负二项回归模型的 Wald 型 t 检验是分析 HEALing 社区研究中群集水平计数数据的有效和适当的方法。
ClinicalTrials.gov 网址:http://www.clinicaltrials.gov;标识符:NCT04111939。