Suppr超能文献

使用社会人口学、邻里环境和生活方式因素预测成年人认知健康的机器学习。

Machine Learning for Prediction of Cognitive Health in Adults Using Sociodemographic, Neighbourhood Environmental, and Lifestyle Factors.

机构信息

Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia.

Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia.

出版信息

Int J Environ Res Public Health. 2022 Sep 2;19(17):10977. doi: 10.3390/ijerph191710977.

Abstract

The environment we live in, and our lifestyle within this environment, can shape our cognitive health. We investigated whether sociodemographic, neighbourhood environment, and lifestyle variables can be used to predict cognitive health status in adults. Cross-sectional data from the AusDiab3 study, an Australian cohort study of adults (34-97 years) ( = 4141) was used. Cognitive function was measured using processing speed and memory tests, which were categorized into distinct classes using latent profile analysis. Sociodemographic variables, measures of the built and natural environment estimated using geographic information system data, and physical activity and sedentary behaviours were used as predictors. Machine learning was performed using gradient boosting machine, support vector machine, artificial neural network, and linear models. Sociodemographic variables predicted processing speed ( = 0.43) and memory ( = 0.20) with good accuracy. Lifestyle factors also accurately predicted processing speed ( = 0.29) but weakly predicted memory ( = 0.10). Neighbourhood and built environment factors were weak predictors of cognitive function. Sociodemographic (AUC = 0.84) and lifestyle (AUC = 0.78) factors also accurately classified cognitive classes. Sociodemographic and lifestyle variables can predict cognitive function in adults. Machine learning tools are useful for population-level assessment of cognitive health status via readily available and easy-to-collect data.

摘要

我们所处的环境和生活方式会影响认知健康。我们研究了社会人口统计学、社区环境和生活方式变量是否可以用来预测成年人的认知健康状况。使用了来自澳大利亚成年人队列研究(AusDiab3 研究)的横断面数据(= 4141)。认知功能使用处理速度和记忆测试进行测量,使用潜在剖面分析将其分为不同类别。社会人口统计学变量、使用地理信息系统数据估计的建筑和自然环境指标以及体育活动和久坐行为被用作预测指标。使用梯度提升机、支持向量机、人工神经网络和线性模型进行机器学习。社会人口统计学变量可以很好地预测处理速度(= 0.43)和记忆(= 0.20)。生活方式因素也可以准确预测处理速度(= 0.29),但对记忆的预测较弱(= 0.10)。邻里和建筑环境因素是认知功能的弱预测因素。社会人口统计学(AUC = 0.84)和生活方式(AUC = 0.78)因素也可以准确地对认知类别进行分类。社会人口统计学和生活方式变量可以预测成年人的认知功能。机器学习工具可通过易于获取和收集的数据,对人群的认知健康状况进行准确评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1397/9517821/7a6483d8a2d6/ijerph-19-10977-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验