Suppr超能文献

利用沙特健康指标(Sharik)全国数据预测多重疾病:统计与机器学习方法

Predicting Multimorbidity Using Saudi Health Indicators (Sharik) Nationwide Data: Statistical and Machine Learning Approach.

作者信息

Albagmi Faisal Mashel, Hussain Mehwish, Kamal Khurram, Sheikh Muhammad Fahad, AlNujaidi Heba Yaagoub, Bah Sulaiman, Althumiri Nora A, BinDhim Nasser F

机构信息

College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia.

College of Public Health, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia.

出版信息

Healthcare (Basel). 2023 Jul 31;11(15):2176. doi: 10.3390/healthcare11152176.

Abstract

The Saudi population is at high risk of multimorbidity. The risk of these morbidities can be reduced by identifying common modifiable behavioural risk factors. This study uses statistical and machine learning methods to predict factors for multimorbidity in the Saudi population. Data from 23,098 Saudi residents were extracted from the "Sharik" Health Indicators Surveillance System 2021. Participants were asked about their demographics and health indicators. Binary logistic models were used to determine predictors of multimorbidity. A backpropagation neural network model was further run using the predictors from the logistic regression model. Accuracy measures were checked using training, validation, and testing data. Females and smokers had the highest likelihood of experiencing multimorbidity. Age and fruit consumption also played a significant role in predicting multimorbidity. Regarding model accuracy, both logistic regression and backpropagation algorithms yielded comparable outcomes. The backpropagation method (accuracy 80.7%) was more accurate than the logistic regression model (77%). Machine learning algorithms can be used to predict multimorbidity among adults, particularly in the Middle East region. Different testing methods later validated the common predicting factors identified in this study. These factors are helpful and can be translated by policymakers to consider improvements in the public health domain.

摘要

沙特人口患多种疾病的风险很高。通过识别常见的可改变行为风险因素,可以降低这些疾病的风险。本研究使用统计和机器学习方法来预测沙特人口中患多种疾病的因素。从2021年的“Sharik”健康指标监测系统中提取了23098名沙特居民的数据。参与者被问及他们的人口统计学和健康指标。二元逻辑模型用于确定多种疾病的预测因素。使用逻辑回归模型中的预测因素进一步运行反向传播神经网络模型。使用训练、验证和测试数据检查准确性指标。女性和吸烟者患多种疾病的可能性最高。年龄和水果摄入量在预测多种疾病方面也起着重要作用。关于模型准确性,逻辑回归和反向传播算法产生了可比的结果。反向传播方法(准确率80.7%)比逻辑回归模型(77%)更准确。机器学习算法可用于预测成年人中的多种疾病,特别是在中东地区。不同的测试方法后来验证了本研究中确定的常见预测因素。这些因素很有帮助,政策制定者可以将其转化为考虑改善公共卫生领域的依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f9a/10418949/14cb7199427a/healthcare-11-02176-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验