Alban-Chacón Francisco E, Lamilla-Rubio Erick A, Alvarez-Alvarado Manuel S
Faculty of Natural Science and Mathematics, Escuela Superior Politécnica del Litoral, Guayaquil 090112, Ecuador.
Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Guayaquil 090514, Ecuador.
Materials (Basel). 2022 Aug 23;15(17):5808. doi: 10.3390/ma15175808.
In the last years, a few experiments in the fields of biological and soft matter physics in colloidal suspensions have reported "normal diffusion" with a Laplacian probability distribution in the particle's displacements (i.e., Brownian yet non-Gaussian diffusion). To model this behavior, different stochastic and microscopic models have been proposed, with the former introducing new random elements that incorporate our lack of information about the media and the latter describing a limited number of interesting physical scenarios. This incentivizes the search of a more thorough understanding of how the media interacts with itself and with the particle being diffused in Brownian yet non-Gaussian diffusion. For this reason, a comprehensive mathematical model to explain Brownian yet non-Gaussian diffusion that includes weak molecular interactions is proposed in this paper. Based on the theory of interfaces by De Gennes and Langevin dynamics, it is shown that long-range interactions in a weakly interacting fluid at shorter time scales leads to a Laplacian probability distribution in the radial particle's displacements. Further, it is shown that a phase separation can explain a high diffusivity and causes this Laplacian distribution to evolve towards a Gaussian via a transition probability in the interval of time as it was observed in experiments. To verify these model predictions, the experimental data of the Brownian motion of colloidal beads on phospholipid bilayer by Wang et al. are used and compared with the results of the theory. This comparison suggests that the proposed model is able to explain qualitatively and quantitatively the Brownian yet non-Gaussian diffusion.
在过去几年中,胶体悬浮液的生物物理和软物质物理领域的一些实验报告了粒子位移中具有拉普拉斯概率分布的“正常扩散”(即布朗扩散但非高斯扩散)。为了模拟这种行为,人们提出了不同的随机模型和微观模型,前者引入了新的随机元素,体现了我们对介质信息的缺乏,而后者描述了有限数量的有趣物理场景。这促使人们更深入地理解在布朗扩散但非高斯扩散中,介质如何与自身以及与被扩散的粒子相互作用。因此,本文提出了一个综合数学模型来解释包含弱分子相互作用的布朗扩散但非高斯扩散。基于德热纳的界面理论和朗之万动力学,研究表明在较短时间尺度下,弱相互作用流体中的长程相互作用会导致粒子径向位移的拉普拉斯概率分布。此外,研究表明相分离可以解释高扩散率,并导致这种拉普拉斯分布在实验观察到的时间间隔内通过跃迁概率演化为高斯分布。为了验证这些模型预测,使用了王等人关于磷脂双层上胶体珠布朗运动的实验数据,并与理论结果进行了比较。这种比较表明,所提出的模型能够定性和定量地解释布朗扩散但非高斯扩散。