Suppr超能文献

数据驱动的时间性饮食模式的发现及其使用能量和时间截止值进行描述的验证。

The Discovery of Data-Driven Temporal Dietary Patterns and a Validation of Their Description Using Energy and Time Cut-Offs.

机构信息

Department of Nutrition Science, Purdue University, West Lafayette, IN 47906, USA.

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA.

出版信息

Nutrients. 2022 Aug 24;14(17):3483. doi: 10.3390/nu14173483.

Abstract

Data-driven temporal dietary patterning (TDP) methods were previously developed. The objectives were to create data-driven temporal dietary patterns and assess concurrent validity of energy and time cut-offs describing the data-driven TDPs by determining their relationships to BMI and waist circumference (WC). The first day 24-h dietary recall timing and amounts of energy for 17,915 U.S. adults of the National Health and Nutrition Examination Survey 2007−2016 were used to create clusters representing four TDPs using dynamic time warping and the kernel k-means clustering algorithm. Energy and time cut-offs were extracted from visualization of the data-derived TDPs and then applied to the data to find cut-off-derived TDPs. The strength of TDP relationships with BMI and WC were assessed using adjusted multivariate regression and compared. Both methods showed a cluster, representing a TDP with proportionally equivalent average energy consumed during three eating events/day, associated with significantly lower BMI and WC compared to the other three clusters that had one energy intake peak/day at 13:00, 18:00, and 19:00 (all p < 0.0001). Participant clusters of the methods were highly overlapped (>83%) and showed similar relationships with obesity. Data-driven TDP was validated using descriptive cut-offs and hold promise for obesity interventions and translation to dietary guidance.

摘要

先前已经开发了数据驱动的时间膳食模式 (TDP) 方法。其目的是创建数据驱动的时间膳食模式,并通过确定它们与 BMI 和腰围 (WC) 的关系来评估描述数据驱动 TDP 的能量和时间截止值的同时有效性。使用美国国家健康和营养检查调查 2007-2016 年的 17915 名成年人的第一天 24 小时膳食回忆时间和能量,使用动态时间扭曲和核 k-均值聚类算法创建代表四个 TDP 的聚类。从数据衍生的 TDP 的可视化中提取能量和时间截止值,然后将其应用于数据以找到截止衍生的 TDP。使用调整后的多元回归评估 TDP 与 BMI 和 WC 的关系强度,并进行比较。两种方法都显示了一个聚类,代表了一种 TDP,其中每天三个进食事件的平均能量消耗比例相等,与其他三个聚类相比,每天 13:00、18:00 和 19:00 有一个能量摄入高峰(所有 p < 0.0001),BMI 和 WC 明显较低。方法的参与者聚类高度重叠(>83%),并且与肥胖具有相似的关系。使用描述性截止值验证了数据驱动的 TDP,并为肥胖干预和转化为饮食指导提供了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6a/9460307/bd6175d6cf31/nutrients-14-03483-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验