Department of Chemical Engineering and Materials Science, Michigan State University, 2527 Engineering, East Lansing, MI 48824, USA.
Nanotechnology. 2013 Oct 25;24(42):424005. doi: 10.1088/0957-4484/24/42/424005. Epub 2013 Sep 25.
A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.
采用溶液法合成了具有超快离子电导率的立方 Li7La3Zr2O12(LLZO),该材料在空气中以及与 Li 的稳定性也得到了提高。通过溶胶-凝胶化学方法制备了由 10nm 交联形成的固态金属氧化物网络,该网络在 600°C 下形成立方 LLZO 相。采用感应热压烧结将溶胶-凝胶 LLZO 粉末烧结成 96%致密的陶瓷。烧结后,LLZO 的平均晶粒尺寸为 260nm,与采用固态技术制备的 LLZO 相比,晶粒尺寸减小了 13 倍。在 298K 时,其总离子电导率为 0.4mS cm-1,与固态合成的 LLZO 相同。有趣的是,尽管室温电导率相同,但溶胶-凝胶 LLZO 的总活化能为 0.41eV,比固态 LLZO(0.26eV)高 1.6 倍。我们认为纳米晶界导致了独特的输运现象,与传统的固态 LLZO 相比,其对温度更为敏感。