Suppr超能文献

基于监督式机器学习的拉挤复合材料断裂韧性预测

Prediction of Fracture Toughness of Pultruded Composites Based on Supervised Machine Learning.

作者信息

Karamov Radmir, Akhatov Iskander, Sergeichev Ivan V

机构信息

Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia.

出版信息

Polymers (Basel). 2022 Sep 1;14(17):3619. doi: 10.3390/polym14173619.

Abstract

Prediction of mechanical properties is an essential part of material design. State-of-the-art simulation-based prediction requires data on microstructure and inter-component interactions of material. However, due to high costs and time limitations, such parameters, which are especially required for the simulation of advanced properties, are not always available. This paper proposes a data-driven approach to predicting the labor-consuming fracture toughness based on a series of standard, easy-to-measure mechanical characteristics. Three supervised machine-learning (ML) models (artificial neural networks, a random forest algorithm, and gradient boosting) were designed and tested for the prediction of mechanical properties of pultruded composites. A considerable dataset of mechanical properties was acquired as results of standard tensile, compression, flexure, in-plane shear, and Charpy tests and utilized as the input to predict the fracture toughness. Furthermore, this study investigated the correlations between the obtained mechanical characteristics. Analysis of ML performance showed that fracture toughness had the highest correlations with longitudinal bending and transverse tension and a strong correlation with the longitudinal compression modulus and tensile strength. The gradient boosting decision tree-based algorithms demonstrated the best prediction performance for fracture toughness, with an MSE less than 10% of the average value, providing a prediction within the range of experimental error. The ML algorithms showed potential in terms of determining which macro-level parameters can be used to predict micro-level material characteristics and how. The results provide inspiration for future pultruded composite material design and can enhance the numerical simulations of material.

摘要

材料性能预测是材料设计的重要组成部分。基于模拟的先进预测方法需要材料微观结构和组分间相互作用的数据。然而,由于成本高昂和时间限制,对于模拟先进性能特别需要的此类参数并不总是可得的。本文提出一种数据驱动的方法,基于一系列标准且易于测量的力学特性来预测耗时的断裂韧性。设计并测试了三种监督式机器学习(ML)模型(人工神经网络、随机森林算法和梯度提升),用于预测拉挤复合材料的力学性能。通过标准拉伸、压缩、弯曲、面内剪切和夏比试验获得了大量力学性能数据集,并将其用作预测断裂韧性的输入。此外,本研究还考察了所获得的力学特性之间的相关性。ML性能分析表明,断裂韧性与纵向弯曲和横向拉伸的相关性最高,与纵向压缩模量和拉伸强度也有很强的相关性。基于梯度提升决策树的算法在预测断裂韧性方面表现出最佳性能,均方误差小于平均值的10%,预测结果在实验误差范围内。ML算法在确定哪些宏观参数可用于预测微观材料特性以及如何进行预测方面显示出潜力。研究结果为未来拉挤复合材料设计提供了思路,并可增强材料的数值模拟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验