Suppr超能文献

结合机器学习(ML)对DP590/CFRP复合层压板预测策略的实验与数值研究

Experimental and Numerical Investigation Integrated with Machine Learning (ML) for the Prediction Strategy of DP590/CFRP Composite Laminates.

作者信息

Hu Haichao, Wei Qiang, Wang Tianao, Ma Quanjin, Jin Peng, Pan Shupeng, Li Fengqi, Wang Shuxin, Yang Yuxuan, Li Yan

机构信息

School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.

School of Mechanical and Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China.

出版信息

Polymers (Basel). 2024 Jun 3;16(11):1589. doi: 10.3390/polym16111589.

Abstract

This study unveils a machine learning (ML)-assisted framework designed to optimize the stacking sequence and orientation of carbon fiber-reinforced polymer (CFRP)/metal composite laminates, aiming to enhance their mechanical properties under quasi-static loading conditions. This work pioneers the expansion of initial datasets for ML analysis in the field by uniquely integrating the experimental results with finite element simulations. Nine ML models, including XGBoost and gradient boosting, were assessed for their precision in predicting tensile and bending strengths. The findings reveal that the XGBoost and gradient boosting models excel in tensile strength prediction due to their low error rates and high interpretability. In contrast, the decision trees, K-nearest neighbors (KNN), and random forest models show the highest accuracy in bending strength predictions. Tree-based models demonstrated exceptional performance across various metrics, notably for CFRP/DP590 laminates. Additionally, this study investigates the impact of layup sequences on mechanical properties, employing an innovative combination of ML, numerical, and experimental approaches. The novelty of this study lies in the first-time application of these ML models to the performance optimization of CFRP/metal composites and in providing a novel perspective through the comprehensive integration of experimental, numerical, and ML methods for composite material design and performance prediction.

摘要

本研究揭示了一种机器学习辅助框架,该框架旨在优化碳纤维增强聚合物(CFRP)/金属复合层压板的堆叠顺序和取向,以提高其在准静态加载条件下的力学性能。这项工作通过将实验结果与有限元模拟独特地整合在一起,开创了该领域用于机器学习分析的初始数据集的扩展。评估了包括XGBoost和梯度提升在内的九个机器学习模型在预测拉伸强度和弯曲强度方面的精度。研究结果表明,XGBoost和梯度提升模型由于其低误差率和高可解释性,在拉伸强度预测方面表现出色。相比之下,决策树、K近邻(KNN)和随机森林模型在弯曲强度预测方面显示出最高的准确性。基于树的模型在各种指标上都表现出卓越的性能,特别是对于CFRP/DP590层压板。此外,本研究采用机器学习、数值和实验方法的创新组合,研究了铺层顺序对力学性能的影响。本研究的新颖之处在于首次将这些机器学习模型应用于CFRP/金属复合材料的性能优化,并通过将实验、数值和机器学习方法全面整合用于复合材料设计和性能预测,提供了一个新颖的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca43/11174379/e8ba99134f46/polymers-16-01589-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验