Suppr超能文献

评估分子对接工具以指导聚合物材料配方设计:以油菜籽和大豆蛋白为例

Assessing Molecular Docking Tools to Guide the Design of Polymeric Materials Formulations: A Case Study of Canola and Soybean Protein.

作者信息

Abookleesh Frage, Mosa Farag E S, Barakat Khaled, Ullah Aman

机构信息

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.

Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H5, Canada.

出版信息

Polymers (Basel). 2022 Sep 5;14(17):3690. doi: 10.3390/polym14173690.

Abstract

After more than 40 years of biopolymer development, the current research is still based on conventional laboratory techniques, which require a large number of experiments. Therefore, finding new research methods are required to accelerate and power the future of biopolymeric development. In this study, promising biopolymer-additive ranking was described using an integrated computer-aided molecular design platform. In this perspective, a set of 21 different additives with plant canola and soy proteins were initially examined by predicting the molecular interactions scores and mode of molecule interactions within the binding site using AutoDock Vina, Molecular Operating Environment (MOE), and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA). The findings of the investigated additives highlighted differences in their binding energy, binding sites, pockets, types, and distance of bonds formed that play crucial roles in protein-additive interactions. Therefore, the molecular docking approach can be used to rank the optimal additive among a set of candidates by predicting their binding affinities. Furthermore, specific molecular-level insights behind protein-additives interactions were provided to explain the ranking results. The highlighted results can provide a set of guidelines for the design of high-performance polymeric materials at the molecular level. As a result, we suggest that the implementation of molecular modeling can serve as a fast and straightforward tool in protein-based bioplastics design, where the correct ranking of additives among sets of candidates is often emphasized. Moreover, these approaches may open new ways for the discovery of new additives and serve as a starting point for more in-depth investigations into this area.

摘要

经过40多年的生物聚合物开发,目前的研究仍基于传统实验室技术,这需要大量实验。因此,需要找到新的研究方法来加速并推动生物聚合物开发的未来发展。在本研究中,使用集成的计算机辅助分子设计平台描述了有前景的生物聚合物添加剂排名。从这个角度来看,最初通过使用AutoDock Vina、分子操作环境(MOE)和分子力学/广义玻恩表面积(MM-GBSA)预测结合位点内的分子相互作用得分和分子相互作用模式,对一组含有植物油菜籽和大豆蛋白的21种不同添加剂进行了研究。所研究添加剂的结果突出了它们在蛋白质-添加剂相互作用中起关键作用的结合能、结合位点、口袋、类型和形成的键的距离的差异。因此,分子对接方法可用于通过预测一组候选物之间的结合亲和力来对最佳添加剂进行排名。此外,还提供了蛋白质-添加剂相互作用背后特定的分子水平见解来解释排名结果。突出的结果可为分子水平上高性能聚合物材料的设计提供一组指导方针。因此,我们建议分子建模的实施可作为基于蛋白质的生物塑料设计中的一种快速且直接的工具,在这种设计中,通常强调在一组候选物中对添加剂进行正确排名。此外,这些方法可能为发现新添加剂开辟新途径,并作为对该领域进行更深入研究的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dac3/9460131/95872afa1228/polymers-14-03690-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验