文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学水凝胶形成的化学修饰生物聚合物。

Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

Chem Rev. 2021 Sep 22;121(18):10908-10949. doi: 10.1021/acs.chemrev.0c00923. Epub 2020 Dec 23.


DOI:10.1021/acs.chemrev.0c00923
PMID:33356174
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8943712/
Abstract

Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.

摘要

生物聚合物是源自植物和动物的天然聚合物,包括多种多糖和多肽。由于其固有的生化和生物物理特性,如细胞黏附、降解和黏弹性,将生物聚合物纳入生物医学水凝胶中引起了极大的兴趣。本综述的目的是详细概述用于生物医学应用的生物聚合物水凝胶的设计和开发,重点介绍生物聚合物的化学修饰和交联方法。首先,描述了生物聚合物的基础和用于引入交联基团的化学偶联方法。然后详细讨论了形成生物聚合物网络的交联方法,包括(i)共价交联(例如,自由基链式聚合、点击交联、由于酚基团氧化引起的交联),(ii)动态共价交联(例如,席夫碱形成、二硫键形成、可逆 Diels-Alder 反应),和(iii)物理交联(例如,主体-客体相互作用、氢键、金属-配体配位、接枝生物聚合物)。最后,强调了化学修饰的生物聚合物水凝胶在组织支架的生物制造、治疗药物输送、组织粘合剂和密封剂以及互穿网络生物聚合物水凝胶的形成中的最新进展。

相似文献

[1]
Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels.

Chem Rev. 2021-9-22

[2]
Click chemistry-based biopolymeric hydrogels for regenerative medicine.

Biomed Mater. 2021-3-16

[3]
Recent advances in biopolymer-based hydrogels and their potential biomedical applications.

Carbohydr Polym. 2024-1-1

[4]
Composite hydrogels assembled from food-grade biopolymers: Fabrication, properties, and applications.

Adv Colloid Interface Sci. 2024-10

[5]
Dynamic protein and polypeptide hydrogels based on Schiff base co-assembly for biomedicine.

J Mater Chem B. 2022-5-4

[6]
Bonding interactions and stability assessment of biopolymer material prepared using type III collagen of avian intestine and anionic polysaccharides.

J Mater Sci Mater Med. 2011-5-6

[7]
Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis.

Molecules. 2023-2-23

[8]
Biopolymers for hydrogels in cosmetics: review.

J Mater Sci Mater Med. 2020-5-25

[9]
Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies.

Adv Colloid Interface Sci. 2024-3

[10]
Semi-IPN- and IPN-Based Hydrogels.

Adv Exp Med Biol. 2018

引用本文的文献

[1]
Self-Healing, Electroconductive Hydrogels for Wound Healing Applications.

Gels. 2025-8-8

[2]
Integrating Deep Learning and Real-Time Imaging to Visualize In Situ Self-Assembly of Self-Healing Interpenetrating Polymer Networks Formed by Protein and Polysaccharide Fibers.

ACS Appl Mater Interfaces. 2025-8-20

[3]
Bioprinting vascularized skin analogs: a stepwise approach.

Burns Trauma. 2025-3-2

[4]
Thermoresponsive Hyaluronate-Based Nanogels for Enhanced Phenanthriplatin Delivery in Cisplatin-Resistant Ovarian Cancer.

Biomacromolecules. 2025-8-11

[5]
Lithography-based 3D printing of hydrogels.

Nat Rev Bioeng. 2025-2

[6]
Nonswelling Lubricative Nanocolloidal Hydrogel Resistant to Biodegradation.

Nanomicro Lett. 2025-7-11

[7]
Hydrogels for preventing post-endoscopic submucosal dissection stenosis in early esophageal cancer: a comprehensive literature review.

Therap Adv Gastroenterol. 2025-6-30

[8]
Hybrid Biological Hydrogel Provides Favorable Bioenergetic, Adhesive, and Antioxidative Effects on Wound Healing.

ACS Biomater Sci Eng. 2025-6-9

[9]
Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics.

Cyborg Bionic Syst. 2025-4-29

[10]
Self-healing adhesive oxidized guar gum hydrogel loaded with mesenchymal stem cell exosomes for corneal wound healing.

J Nanobiotechnology. 2025-4-28

本文引用的文献

[1]
Alginate based antimicrobial hydrogels formed by integrating Diels-Alder "click chemistry" and the thiol-ene reaction.

RSC Adv. 2018-3-21

[2]
Hydrogel microparticles for biomedical applications.

Nat Rev Mater. 2020-1

[3]
Simultaneous Interpenetrating Polymer Network of Collagen and Hyaluronic Acid as an -Forming Corneal Defect Filler.

Chem Mater. 2020-6-23

[4]
Injectable, Self-Healing Chimeric Catechol-Fe(III) Hydrogel for Localized Combination Cancer Therapy.

ACS Biomater Sci Eng. 2017-12-11

[5]
Particle Hydrogels Based on Hyaluronic Acid Building Blocks.

ACS Biomater Sci Eng. 2016-11-14

[6]
3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.

ACS Biomater Sci Eng. 2016-10-10

[7]
Engineered Fibrous Networks To Investigate the Influence of Fiber Mechanics on Myofibroblast Differentiation.

ACS Biomater Sci Eng. 2019-8-12

[8]
Modular Cross-Linking of Gelatin-Based Thiol-Norbornene Hydrogels for 3D Culture of Hepatocellular Carcinoma Cells.

ACS Biomater Sci Eng. 2015-12-14

[9]
3D Bioprinting of Macroporous Materials Based on Entangled Hydrogel Microstrands.

Adv Sci (Weinh). 2020-7-19

[10]
Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks.

Trends Biotechnol. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索