Suppr超能文献

基于概率的模型排名方法:一种机器学习模型性能评估的替代方法。

A Probability-Based Models Ranking Approach: An Alternative Method of Machine-Learning Model Performance Assessment.

机构信息

Faculty of Economic Sciences, University of Warsaw, Długa Street 44/50, 00-241 Warsaw, Poland.

出版信息

Sensors (Basel). 2022 Aug 24;22(17):6361. doi: 10.3390/s22176361.

Abstract

Performance measures are crucial in selecting the best machine learning model for a given problem. Estimating classical model performance measures by subsampling methods like bagging or cross-validation has several weaknesses. The most important ones are the inability to test the significance of the difference, and the lack of interpretability. Recently proposed Elo-based Predictive Power (EPP)-a meta-measure of machine learning model performance, is an attempt to address these weaknesses. However, the EPP is based on wrong assumptions, so its estimates may not be correct. This paper introduces the Probability-based Ranking Model Approach (PMRA), which is a modified EPP approach with a correction that makes its estimates more reliable. PMRA is based on the calculation of the probability that one model achieves a better result than another one, using the Mixed Effects Logistic Regression model. The empirical analysis was carried out on a real mortgage credits dataset. The analysis included a comparison of how the PMRA and state-of-the-art k-fold cross-validation ranked the 49 machine learning models, an example application of a novel method in hyperparameters tuning problem, and a comparison of PMRA and EPP indications. PMRA gives the opportunity to compare a newly developed algorithm to state-of-the-art algorithms based on statistical criteria. It is the solution to select the best hyperparameters configuration and to formulate criteria for the continuation of the hyperparameters space search.

摘要

性能指标对于为给定问题选择最佳机器学习模型至关重要。通过套袋或交叉验证等抽样方法来估计经典模型的性能指标存在几个弱点。最重要的是无法测试差异的显著性,并且缺乏可解释性。最近提出的基于 Elo 的预测能力 (EPP)——一种机器学习模型性能的综合指标,试图解决这些弱点。然而,EPP 基于错误的假设,因此其估计可能不正确。本文介绍了基于概率的排名模型方法 (PMRA),这是一种改进的 EPP 方法,通过修正使其估计更加可靠。PMRA 基于使用混合效应逻辑回归模型计算一个模型比另一个模型获得更好结果的概率。实证分析是在真实的抵押贷款信用数据集上进行的。分析包括比较 PMRA 和最先进的 k 折交叉验证如何对 49 个机器学习模型进行排名,展示一种新方法在超参数调优问题中的应用实例,以及比较 PMRA 和 EPP 指标。PMRA 提供了一种机会,可以根据统计标准将新开发的算法与最先进的算法进行比较。它是选择最佳超参数配置的解决方案,并为超参数空间搜索的继续制定标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9b/9460558/1013583abdfb/sensors-22-06361-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验