Centro de Tecnologia Avanzada, CIATEQ A.C., Jalisco 45131, Mexico.
Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
Sensors (Basel). 2022 Aug 24;22(17):6383. doi: 10.3390/s22176383.
Data reliability is of paramount importance for decision-making processes in the industry, and for this, having quality links for wireless sensor networks plays a vital role. Process and machine monitoring can be carried out through ANDON towers with wireless transmission and machine learning algorithms that predict link quality (LQE) to save time, hence reducing expenses by early failure detection and problem prevention. Indeed, alarm signals used in conjunction with LQE classification models represent a novel paradigm for ANDON towers, allowing low-cost remote sensing within industrial environments. In this research, we propose a deep learning model, suitable for implementation in small workshops with limited computational resources. As part of our work, we collected a novel dataset from a realistic experimental scenario with actual industrial machinery, similar to that commonly found in industrial applications. Then, we carried out extensive data analyses using a variety of machine learning models, each with a methodical search process to adjust hyper-parameters, achieving results from common features such as payload, distance, power, and bit error rate not previously reported in the state of the art. We achieved an accuracy of 99.3% on the test dataset with very little use of computational resources.
数据可靠性对于工业决策过程至关重要,为此,具有高质量的无线传感器网络链路至关重要。通过带有无线传输和机器学习算法的 ANDON 塔可以进行过程和机器监控,这些算法可以预测链路质量(LQE),从而节省时间,通过早期故障检测和问题预防来降低成本。实际上,与 LQE 分类模型结合使用的报警信号代表了 ANDON 塔的一种新范例,允许在工业环境中进行低成本的远程感应。在这项研究中,我们提出了一种深度学习模型,适合在计算资源有限的小型车间中实施。作为我们工作的一部分,我们从具有实际工业机械的实际实验场景中收集了一个新颖的数据集,类似于在工业应用中常见的数据集。然后,我们使用各种机器学习模型进行了广泛的数据分析,每个模型都有一个系统的搜索过程来调整超参数,从而得出以前在技术状态中未报告过的常见特征(如有效负载、距离、功率和误码率)的结果。我们在测试数据集上实现了 99.3%的准确率,而使用的计算资源非常少。