Suppr超能文献

工业 4.0 中的故障处理:定义、流程与应用。

Fault Handling in Industry 4.0: Definition, Process and Applications.

机构信息

Department of Electrical Engineering and Information Technology, Darmstadt University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany.

Department of Mathematics and Natural Sciences, Darmstadt University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany.

出版信息

Sensors (Basel). 2022 Mar 12;22(6):2205. doi: 10.3390/s22062205.

Abstract

The increase of productivity and decrease of production loss is an important goal for modern industry to stay economically competitive. For that, efficient fault management and quick amendment of faults in production lines are needed. The prioritization of faults accelerates the fault amendment process but depends on preceding fault detection and classification. Data-driven methods can support fault management. The increasing usage of sensors to monitor machine health status in production lines leads to large amounts of data and high complexity. Machine Learning methods exploit this data to support fault management. This paper reviews literature that presents methods for several steps of fault management and provides an overview of requirements for fault handling and methods for fault detection, fault classification, and fault prioritization, as well as their prerequisites. The paper shows that fault prioritization lacks research about available learning methods and underlines that expert opinions are needed.

摘要

提高生产力和减少生产损失是现代工业保持经济竞争力的重要目标。为此,需要有效的故障管理和快速纠正生产线故障。故障优先级化可以加速故障修正过程,但需要依靠先前的故障检测和分类。数据驱动的方法可以支持故障管理。在生产线上使用越来越多的传感器来监测机器健康状况,导致了大量的数据和高复杂性。机器学习方法利用这些数据来支持故障管理。本文综述了文献中提出的故障管理的几个步骤的方法,并提供了故障处理的要求和故障检测、故障分类和故障优先级化的方法概述,以及它们的前提条件。本文表明,故障优先级化缺乏对现有学习方法的研究,并强调需要专家意见。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2923/8954361/c53ff6af78e8/sensors-22-02205-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验