RITM Laboratory, CED Engineering Sciences, Hassan II University, Casablanca 20000, Morocco.
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
Sensors (Basel). 2022 Aug 28;22(17):6477. doi: 10.3390/s22176477.
Cooperative network is a promising concept for achieving a high-accuracy decision of spectrum sensing in cognitive radio networks. It enables a collaborative exchange of the sensing measurements among the network users to monitor the primary spectrum occupancy. However, the presence of malicious users leads to harmful interferences in the system by transmitting incorrect local sensing observations.To overcome this security related problem and to improve the accuracy decision of spectrum sensing in cooperative cognitive radio networks, we proposed a new approach based on two machine learning solutions. For the first solution, a new stacking model-based malicious users detection is proposed, using two innovative techniques, including chaotic compressive sensing technique-based authentication for feature extraction with a minimum of measurements and an ensemble machine learning technique for users classification. For the second solution, a novel deep learning technique is proposed, using scalogram images as inputs for the primary user spectrum's classification. The simulation results show the high efficiency of both proposed solutions, where the accuracy of the new stacking model reaches 97% in the presence of 50% of malicious users, while the new scalogram technique-based spectrum sensing is fast and achieves a high probability of detection with a lower number of epochs and a low probability of false alarm.
协作网络是在认知无线电网络中实现高精度频谱感知决策的一种很有前途的概念。它可以实现网络用户之间的协作式传感测量交换,以监测主频谱占用情况。然而,恶意用户的存在会通过传输不正确的本地传感观测值对系统造成有害干扰。为了克服这个安全相关的问题,并提高协作认知无线电网络中频谱感知的准确性决策,我们提出了一种新的基于两种机器学习解决方案的方法。对于第一种解决方案,提出了一种基于堆叠模型的恶意用户检测方法,使用了两种创新技术,包括混沌压缩感知技术的基于认证的特征提取,以及用于用户分类的集成机器学习技术。对于第二种解决方案,提出了一种新的基于分形图像的深度学习技术,用于主用户频谱的分类。仿真结果表明了这两种解决方案的高效性,其中新堆叠模型的准确性在存在 50%的恶意用户时达到了 97%,而基于分形图像的新频谱感知技术速度快,具有较高的检测概率,且需要较少的周期和较低的虚警概率。