Suppr超能文献

用于频谱感知的3.5GHz频段频谱图的深度学习分类

Deep Learning Classification of 3.5 GHz Band Spectrograms with Applications to Spectrum Sensing.

作者信息

Lees W Max, Wunderlich Adam, Jeavons Peter, Hale Paul D, Souryal Michael R

机构信息

Communications Technology Laboratory, National Institute of Standards and Technology, Boulder, CO, USA and Gaithersburg, MD, USA.

出版信息

IEEE Trans Cogn Commun Netw. 2019;5. doi: 10.1109/TCCN.2019.2899871.

Abstract

In the United States, the Federal Communications Commission has adopted rules permitting commercial wireless networks to share spectrum with federal incumbents in the 3.5 GHz Citizens Broadband Radio Service band. These rules require commercial systems to vacate the band when sensors detect radars operated by the U.S. military; a key example being the SPN-43 air traffic control radar. Such sensors require highly-accurate detection algorithms to meet their operating requirements. In this paper, using a library of over 14,000 3.5 GHz band spectrograms collected by a recent measurement campaign, we investigate the performance of thirteen methods for SPN-43 radar detection. Namely, we compare classical methods from signal detection theory and machine learning to several deep learning architectures. We demonstrate that machine learning algorithms appreciably outperform classical signal detection methods. Specifically, we find that a three-layer convolutional neural network offers a superior tradeoff between accuracy and computational complexity. Last, we apply this three-layer network to generate descriptive statistics for the full 3.5 GHz spectrogram library. Our findings highlight potential weaknesses of classical methods and strengths of modern machine learning algorithms for radar detection in the 3.5 GHz band.

摘要

在美国,联邦通信委员会已通过相关规定,允许商业无线网络在3.5吉赫兹公民宽带无线电服务频段与联邦现有用户共享频谱。这些规定要求商业系统在传感器检测到美国军方操作的雷达时腾出该频段;一个关键例子是SPN - 43空中交通管制雷达。此类传感器需要高精度的检测算法来满足其运行要求。在本文中,我们利用最近一次测量活动收集的超过14000个3.5吉赫兹频段频谱图库,研究了13种用于检测SPN - 43雷达的方法的性能。具体而言,我们将信号检测理论和机器学习中的经典方法与几种深度学习架构进行了比较。我们证明机器学习算法明显优于经典信号检测方法。特别地,我们发现三层卷积神经网络在准确性和计算复杂度之间提供了更好的权衡。最后,我们应用这个三层网络为整个3.5吉赫兹频谱图库生成描述性统计数据。我们研究结果突出了经典方法在3.5吉赫兹频段雷达检测中的潜在弱点以及现代机器学习算法的优势。

相似文献

7
3.5 GHz Environmental Sensing Capability Detection Thresholds and Deployment.3.5吉赫兹环境传感能力检测阈值与部署
IEEE Trans Cogn Commun Netw. 2017 Sep;3(3):437-449. doi: 10.1109/TCCN.2017.2748121. Epub 2017 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验