Suppr超能文献

一种基于对抗攻击的字符级文本图像新型隐写方法。

A Novel Steganography Method for Character-Level Text Image Based on Adversarial Attacks.

机构信息

Institute for Cyber Security, School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China.

Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900, China.

出版信息

Sensors (Basel). 2022 Aug 29;22(17):6497. doi: 10.3390/s22176497.

Abstract

The Internet has become the main channel of information communication, which contains a large amount of secret information. Although network communication provides a convenient channel for human communication, there is also a risk of information leakage. Traditional image steganography algorithms use manually crafted steganographic algorithms or custom models for steganography, while our approach uses ordinary OCR models for information embedding and extraction. Even if our OCR models for steganography are intercepted, it is difficult to find their relevance to steganography. We propose a novel steganography method for character-level text images based on adversarial attacks. We exploit the complexity and uniqueness of neural network boundaries and use neural networks as a tool for information embedding and extraction. We use an adversarial attack to embed the steganographic information into the character region of the image. To avoid detection by other OCR models, we optimize the generation of the adversarial samples and use a verification model to filter the generated steganographic images, which, in turn, ensures that the embedded information can only be recognized by our local model. The decoupling experiments show that the strategies we adopt to weaken the transferability can reduce the possibility of other OCR models recognizing the embedded information while ensuring the success rate of information embedding. Meanwhile, the perturbations we add to embed the information are acceptable. Finally, we explored the impact of different parameters on the algorithm with the potential of our steganography algorithm through parameter selection experiments. We also verify the effectiveness of our validation model to select the best steganographic images. The experiments show that our algorithm can achieve a 100% information embedding rate and more than 95% steganography success rate under the set condition of 3 samples per group. In addition, our embedded information can be hardly detected by other OCR models.

摘要

互联网已成为信息交流的主要渠道,其中包含大量的秘密信息。虽然网络通信为人类的交流提供了便利的渠道,但也存在信息泄露的风险。传统的图像隐写算法使用手工制作的隐写算法或自定义模型进行隐写,而我们的方法则使用普通的 OCR 模型进行信息嵌入和提取。即使我们用于隐写的 OCR 模型被拦截,也很难发现它们与隐写术的相关性。我们提出了一种基于对抗攻击的字符级文本图像隐写新方法。我们利用神经网络边界的复杂性和独特性,将神经网络作为信息嵌入和提取的工具。我们使用对抗攻击将隐写信息嵌入到图像的字符区域。为了避免被其他 OCR 模型检测到,我们优化了对抗样本的生成,并使用验证模型对生成的隐写图像进行过滤,从而确保嵌入的信息只能被我们的本地模型识别。去耦实验表明,我们采用的削弱可转移性的策略可以降低其他 OCR 模型识别嵌入信息的可能性,同时保证信息嵌入的成功率。同时,我们添加的用于嵌入信息的扰动是可以接受的。最后,我们通过参数选择实验探讨了不同参数对算法的影响,并利用验证模型验证了选择最佳隐写图像的有效性。实验表明,在每组 3 个样本的设定条件下,我们的算法可以实现 100%的信息嵌入率和超过 95%的隐写成功率。此外,我们的嵌入式信息很难被其他 OCR 模型检测到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00f4/9460549/dcfc90cd25ab/sensors-22-06497-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验