Suppr超能文献

一种用于增强数据安全性的深度学习驱动的多层隐写方法。

A deep learning-driven multi-layered steganographic approach for enhanced data security.

作者信息

Sanjalawe Yousef, Al-E'mari Salam, Fraihat Salam, Abualhaj Mosleh, Alzubi Emran

机构信息

Department of Information Technology, King Abdullah II School for Information Technology, University of Jordan (JU), Amman, 11942, Jordan.

Department of Information Security, Faculty of Information Technology, University of Petra (UoP), Amman, 11196, Jordan.

出版信息

Sci Rep. 2025 Feb 8;15(1):4761. doi: 10.1038/s41598-025-89189-5.

Abstract

In the digital era, ensuring data integrity, authenticity, and confidentiality is critical amid growing interconnectivity and evolving security threats. This paper addresses key limitations of traditional steganographic methods, such as limited payload capacity, susceptibility to detection, and lack of robustness against attacks. A novel multi-layered steganographic framework is proposed, integrating Huffman coding, Least Significant Bit (LSB) embedding, and a deep learning-based encoder-decoder to enhance imperceptibility, robustness, and security. Huffman coding compresses data and obfuscates statistical patterns, enabling efficient embedding within cover images. At the same time, the deep learning encoder adds layer of protection by concealing an image within another. Extensive evaluations using benchmark datasets, including Tiny ImageNet, COCO, and CelebA, demonstrate the approach's superior performance. Key contributions include achieving high visual fidelity with Structural Similarity Index Metrics (SSIM) consistently above 99%, robust data recovery with text recovery accuracy reaching 100% under standard conditions, and enhanced resistance to common attacks such as noise and compression. The proposed framework significantly improves robustness, security, and computational efficiency compared to traditional methods. By balancing imperceptibility and resilience, this paper advances secure communication and digital rights management, addressing modern challenges in data hiding through an innovative combination of compression, adaptive embedding, and deep learning techniques.

摘要

在数字时代,随着互联性不断增强和安全威胁不断演变,确保数据的完整性、真实性和保密性至关重要。本文探讨了传统隐写术方法的关键局限性,如有效载荷容量有限、易被检测以及缺乏抗攻击鲁棒性。提出了一种新颖的多层隐写框架,集成了霍夫曼编码、最低有效位(LSB)嵌入以及基于深度学习的编码器 - 解码器,以增强不可感知性、鲁棒性和安全性。霍夫曼编码压缩数据并模糊统计模式,从而能够在载体图像中高效嵌入。同时,深度学习编码器通过将一幅图像隐藏在另一幅图像中来增加一层保护。使用包括Tiny ImageNet、COCO和CelebA在内的基准数据集进行的广泛评估证明了该方法的卓越性能。主要贡献包括通过结构相似性指数度量(SSIM)始终保持在99%以上实现高视觉保真度,在标准条件下文本恢复准确率达到100%实现鲁棒的数据恢复,以及增强对噪声和压缩等常见攻击的抵抗力。与传统方法相比,所提出的框架显著提高了鲁棒性、安全性和计算效率。通过平衡不可感知性和恢复能力,本文推动了安全通信和数字版权管理,通过压缩、自适应嵌入和深度学习技术的创新组合应对数据隐藏中的现代挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7cd/11807153/c3bff8c305e5/41598_2025_89189_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验