Suppr超能文献

使用长短期记忆融合卷积神经网络进行图像隐写分析以实现安全远程医疗

Image steganalysis using LSTM fused convolutional neural networks for secure telemedicine.

作者信息

Shehab Doaa, Alhaddad Mohmmed

机构信息

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Front Med (Lausanne). 2025 Sep 1;12:1619706. doi: 10.3389/fmed.2025.1619706. eCollection 2025.

Abstract

Deep learning-based image steganalysis has progressed in recent times, with efforts more concerted toward prioritizing detection accuracy over lightweight frameworks. In the context of AI-driven health solutions, ensuring the security and integrity of medical images is imperative. This study introduces a novel approach that leverages the correlation between local image features using a CNN fused Long Short-Term Memory (LSTM) model for enhanced feature extraction. By replacing the fully connected layers of conventional CNN architectures with LSTM, our proposed method prioritizes high-relevance features, making it a viable choice for detecting hidden data within medical and sensitive imaging datasets. The LSTM layers in our hybrid model demonstrate better sensitivity characteristics for ensuring privacy in AI-driven diagnostics and telemedicine. Experiments were conducted on Break Our Steganographic System (BOSS Base 1.01) and Break Our Watermarking System (BOWS) datasets, followed by validation on the ALASKA2 Image Steganalysis dataset. The results confirm that our approach generalizes effectively and would serve as impetus to ensure security and privacy for digital healthcare solutions.

摘要

近年来,基于深度学习的图像隐写分析技术取得了进展,人们更加一致地致力于将检测准确性置于轻量级框架之上。在人工智能驱动的健康解决方案背景下,确保医学图像的安全性和完整性至关重要。本研究引入了一种新颖的方法,该方法利用卷积神经网络(CNN)融合长短期记忆(LSTM)模型来增强特征提取,从而利用局部图像特征之间的相关性。通过用LSTM替换传统CNN架构的全连接层,我们提出的方法优先考虑高相关性特征,使其成为检测医学和敏感成像数据集中隐藏数据的可行选择。我们混合模型中的LSTM层在确保人工智能驱动的诊断和远程医疗中的隐私方面表现出更好的敏感性特征。在“破解我们的隐写系统(BOSS Base 1.01)”和“破解我们的水印系统(BOWS)”数据集上进行了实验,随后在ALASKA2图像隐写分析数据集上进行了验证。结果证实,我们的方法具有有效的通用性,并将为确保数字医疗解决方案的安全性和隐私性提供动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453f/12433940/1d0fde78579c/fmed-12-1619706-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验