Suppr超能文献

无监督异常检测在 Φ-OTDR 中的应用。

Unsupervised Anomaly Detection Applied to Φ-OTDR.

机构信息

ViVoLab, Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain.

Applied Physics Department, Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain.

出版信息

Sensors (Basel). 2022 Aug 29;22(17):6515. doi: 10.3390/s22176515.

Abstract

Distributed acoustic sensors (DASs) based on direct-detection Φ-OTDR use the light-matter interaction between light pulses and optical fiber to detect mechanical events in the fiber environment. The signals received in Φ-OTDR come from the coherent interference of the portion of the fiber illuminated by the light pulse. Its high sensitivity to minute phase changes in the fiber results in a severe reduction in the signal to noise ratio in the intensity trace that demands processing techniques be able to isolate events. For this purpose, this paper proposes a method based on Unsupervised Anomaly Detection techniques which make use of concepts from the field of deep learning and allow the removal of much of the noise from the Φ-OTDR signals. The fact that this method is unsupervised means that no human-labeled data are needed for training and only event-free data are used for this purpose. Moreover, this method has been implemented and its performance has been tested with real data showing promising results.

摘要

基于直接检测 Φ-OTDR 的分布式声传感器 (DASs) 利用光脉冲与光纤之间的光物质相互作用来检测光纤环境中的机械事件。Φ-OTDR 中接收到的信号来自于被光脉冲照亮的光纤部分的相干干涉。它对光纤中微小相位变化的高度敏感性导致强度迹线上的信噪比严重降低,这就要求处理技术能够隔离事件。为此,本文提出了一种基于无监督异常检测技术的方法,该方法利用深度学习领域的概念,能够从 Φ-OTDR 信号中去除大部分噪声。由于这种方法是无监督的,因此不需要进行人工标记数据的训练,并且仅使用无事件的数据来进行此操作。此外,已经实现了该方法,并使用实际数据对其性能进行了测试,结果令人鼓舞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6acc/9460670/a345377e1bc0/sensors-22-06515-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验