Gan Jiayan, Hu Ang, Kang Ziyi, Qu Zhipeng, Yang Zhanxiang, Yang Rui, Wang Yibing, Shao Huaizong, Zhou Jun
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Research Center of Advanced RF Chips and Systems, Nanhu Laboratory, Jiaxing 314000, China.
Sensors (Basel). 2022 Aug 30;22(17):6532. doi: 10.3390/s22176532.
As a potential air control measure, RF-based surveillance is one of the most commonly used unmanned aerial vehicles (UAV) surveillance methods that exploits specific emitter identification (SEI) technology to identify captured RF signal from ground controllers to UAVs. Recently many SEI algorithms based on deep convolution neural network (DCNN) have emerged. However, there is a lack of the implementation of specific hardware. This paper proposes a high-accuracy and power-efficient hardware accelerator using an algorithm-hardware co-design for UAV surveillance. For the algorithm, we propose a scalable SEI neural network with SNR-aware adaptive precision computation. With SNR awareness and precision reconfiguration, it can adaptively switch between DCNN and binary DCNN to cope with low SNR and high SNR tasks, respectively. In addition, a short-time Fourier transform (STFT) reusing DCNN method is proposed to pre-extract feature of UAV signal. For hardware, we designed a SNR sensing engine, denoising engine, and specialized DCNN engine with hybrid-precision convolution and memory access, aiming at SEI acceleration. Finally, we validate the effectiveness of our design on a FPGA, using a public UAV dataset. Compared with a state-of-the-art algorithm, our method can achieve the highest accuracy of 99.3% and an F1 score of 99.3%. Compared with other hardware designs, our accelerator can achieve the highest power efficiency of 40.12 Gops/W and 96.52 Gops/W with INT16 precision and binary precision.
作为一种潜在的空中控制措施,基于射频的监视是最常用的无人机监视方法之一,它利用特定发射机识别(SEI)技术来识别从地面控制器到无人机的捕获射频信号。最近,许多基于深度卷积神经网络(DCNN)的SEI算法应运而生。然而,缺乏特定硬件的实现。本文提出了一种用于无人机监视的、采用算法-硬件协同设计的高精度且高能效的硬件加速器。对于算法,我们提出了一种具有信噪比感知自适应精度计算的可扩展SEI神经网络。通过信噪比感知和精度重新配置,它可以分别在DCNN和二进制DCNN之间自适应切换,以应对低信噪比和高信噪比任务。此外,还提出了一种复用DCNN的短时傅里叶变换(STFT)方法来预提取无人机信号的特征。对于硬件,我们设计了一个信噪比传感引擎、去噪引擎以及具有混合精度卷积和内存访问功能的专用DCNN引擎,旨在加速SEI。最后,我们使用一个公开的无人机数据集在现场可编程门阵列(FPGA)上验证了我们设计的有效性。与一种先进算法相比,我们的方法可以达到99.3%的最高准确率和99.3%的F1分数。与其他硬件设计相比,我们的加速器在INT16精度和二进制精度下可以分别达到40.12 Gops/W和96.52 Gops/W的最高功率效率。