Suppr超能文献

基于无人机遥测无线电的优化射频足迹识别

Optimized Radio Frequency Footprint Identification Based on UAV Telemetry Radios.

作者信息

Tian Yuan, Wen Hong, Zhou Jiaxin, Duan Zhiqiang, Li Tao

机构信息

College of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China.

School of Unmanned Aerial Vehicle Industry, Chengdu Aeronautic Polytechnic, Chengdu 610100, China.

出版信息

Sensors (Basel). 2024 Aug 6;24(16):5099. doi: 10.3390/s24165099.

Abstract

With the widespread use of unmanned aerial vehicles (UAVs), the detection and identification of UAVs is a vital security issue for the safety of airspace and ground facilities in the no-fly zone. Telemetry radios are important wireless communication devices for UAVs, especially in UAVs beyond the visual line of sight (BVLOS) operating mode. This work focuses on the UAV identification approach using transient signals from UAV telemetry radios instead of the signals from UAV controllers that the former research work depended on. In our novel UAV Radio Frequency (RF) identification system framework based on telemetry radio signals, the EC-α algorithm is optimized to detect the starting point of the UAV transient signal and the detection accuracy at different signal-to-noise ratios (SNR) is evaluated. In the training stage, the Convolutional Neural Network (CNN) model is trained to extract features from raw I/Q data of the transient signals with different waveforms. Its architecture and hyperparameters are analyzed and optimized. In the identification stage, the extracted transient signals are clustered through the Self-Organizing Map (SOM) algorithm and the Clustering Signals Joint Identification (CSJI) algorithm is proposed to improve the accuracy of RF fingerprint identification. To evaluate the performance of our proposed approach, we design a testbed, including two UAVs as the flight platform, a Universal Software Radio Peripheral (USRP) as the receiver, and 20 telemetry radios with the same model as targets for identification. Indoor test results show that the optimized identification approach achieves an average accuracy of 92.3% at 30 dB. In comparison, the identification accuracy of SVM and KNN is 69.7% and 74.5%, respectively, at the same SNR condition. Extensive experiments are conducted outdoors to demonstrate the feasibility of this approach.

摘要

随着无人机(UAV)的广泛使用,无人机的检测与识别对于禁飞区内空域和地面设施的安全而言是至关重要的安全问题。遥测无线电是无人机重要的无线通信设备,尤其是在超视距(BVLOS)运行模式的无人机中。这项工作聚焦于利用无人机遥测无线电的瞬态信号而非先前研究工作所依赖的无人机控制器信号的无人机识别方法。在我们基于遥测无线电信号的新型无人机射频(RF)识别系统框架中,对EC-α算法进行了优化以检测无人机瞬态信号的起始点,并评估了不同信噪比(SNR)下的检测精度。在训练阶段,训练卷积神经网络(CNN)模型以从具有不同波形的瞬态信号的原始I/Q数据中提取特征。分析并优化了其架构和超参数。在识别阶段,通过自组织映射(SOM)算法对提取的瞬态信号进行聚类,并提出聚类信号联合识别(CSJI)算法以提高射频指纹识别的准确性。为了评估我们提出的方法的性能,我们设计了一个测试平台,包括两架作为飞行平台的无人机、一个作为接收器的通用软件无线电外设(USRP)以及20个与待识别目标型号相同的遥测无线电。室内测试结果表明,优化后的识别方法在30 dB时的平均准确率达到92.3%。相比之下,在相同信噪比条件下,支持向量机(SVM)和K近邻(KNN)的识别准确率分别为69.7%和74.5%。在户外进行了大量实验以证明该方法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a957/11359342/838e2d0ee000/sensors-24-05099-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验