Khemchandani R, Chandra Suresh
Department of Electrical Engineering, Indian Institute of Technology, Hauz-Khas, New Delhi, India.
IEEE Trans Pattern Anal Mach Intell. 2007 May;29(5):905-10. doi: 10.1109/tpami.2007.1068.
We propose Twin SVM, a binary SVM classifier that determines two nonparallel planes by solving two related SVM-type problems, each of which is smaller than in a conventional SVM. The Twin SVM formulation is in the spirit of proximal SVMs via generalized eigenvalues. On several benchmark data sets, Twin SVM is not only fast, but shows good generalization. Twin SVM is also useful for automatically discovering two-dimensional projections of the data.
我们提出了孪生支持向量机(Twin SVM),这是一种二元支持向量机分类器,它通过解决两个相关的支持向量机类型问题来确定两个非平行平面,其中每个问题都比传统支持向量机中的问题规模更小。孪生支持向量机的公式是基于广义特征值的近端支持向量机的思想。在几个基准数据集上,孪生支持向量机不仅速度快,而且具有良好的泛化能力。孪生支持向量机对于自动发现数据的二维投影也很有用。