Suppr超能文献

一种用于支持向量机的新型有界损失框架。

A novel bounded loss framework for support vector machines.

作者信息

Li Feihong, Yang Hu

机构信息

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China.

出版信息

Neural Netw. 2024 Oct;178:106476. doi: 10.1016/j.neunet.2024.106476. Epub 2024 Jun 25.

Abstract

This paper introduces a novel bounded loss framework for SVM and SVR. Specifically, using the Pinball loss as an illustration, we devise a novel bounded exponential quantile loss (L-loss) for both support vector machine classification and regression tasks. For L-loss, it not only enhances the robustness of SVM and SVR against outliers but also improves the robustness of SVM to resampling from a different perspective. Furthermore, EQSVM and EQSVR were constructed based on L-loss, and the influence functions and breakdown point lower bounds of their estimators are derived. It is proved that the influence functions are bounded, and the breakdown point lower bounds can reach the highest asymptotic breakdown point of 1/2. Additionally, we demonstrated the robustness of EQSVM to resampling and derived its generalization error bound based on Rademacher complexity. Due to the L-loss being non-convex, we can use the concave-convex procedure (CCCP) technique to transform the problem into a series of convex optimization problems and use the ClipDCD algorithm to solve these convex optimization problems. Numerous experiments have been conducted to confirm the effectiveness of the proposed EQSVM and EQSVR.

摘要

本文介绍了一种用于支持向量机(SVM)和支持向量回归(SVR)的新型有界损失框架。具体而言,以弹珠损失为例,我们为支持向量机分类和回归任务设计了一种新型有界指数分位数损失(L-损失)。对于L-损失,它不仅增强了SVM和SVR对异常值的鲁棒性,还从不同角度提高了SVM对重采样的鲁棒性。此外,基于L-损失构建了EQSVM和EQSVR,并推导了它们估计器的影响函数和崩溃点下界。证明了影响函数是有界的,并且崩溃点下界可以达到最高渐近崩溃点1/2。此外,我们展示了EQSVM对重采样的鲁棒性,并基于拉德马赫复杂度推导了其泛化误差界。由于L-损失是非凸的,我们可以使用凹凸过程(CCCP)技术将问题转化为一系列凸优化问题,并使用ClipDCD算法来解决这些凸优化问题。已经进行了大量实验来证实所提出的EQSVM和EQSVR的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验