Suppr超能文献

利用带功率谱的控制图和人工神经网络进行设备级异常检测。

Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles.

机构信息

Department of Electrical and Electronics Engineering, Eskisehir Technical University, 26555 Eskisehir, Turkey.

出版信息

Sensors (Basel). 2022 Sep 2;22(17):6639. doi: 10.3390/s22176639.

Abstract

Nowadays, the development of the Internet of Things (IoT) concept has increased the interest in some technologies, one of which is the detection of anomalies in home appliances before they occur. In this work, in order to contribute to the works that use appliance power profiles for anomaly detection, a novel Appliance Monitoring and Anomaly Detection System (AM-ADS) is presented. AM-ADS consists of a main controller, a database, IoT-based communication units, home appliances, and power measurement units (smart plugs or special measurement equipments) mounted on appliances. In AM-ADS, a new Control Chart (CC) based method, for the cases that a limited number of historical power profiles are available; and a new Artificial Neural Network (ANN) based method, for the cases that a sufficient number of historical power profiles of each anomaly free and anomalous situations are available, are used according to the developed rule-based AM-ADS procedure to maximize the advantages and to eliminate the disadvantages of these methods as much as possible. According to the AM-ADS procedure, power consumptions of appliances, which provide meaningful information about the health of appliances, are measured during their operations and the corresponding power profiles are created. Active power, power factor, and operation duration features of power profiles are considered as decisive control parameters and different characteristics of these parameters are used as inputs for CC and ANN-based methods. The efficiency and performance of AM-ADS are validated by application case studies, where the ability to detect anomalies varies between 94.56% and 99.03% when a limited number of historical data is available; and the ability to detect and classify anomalies varies between 96.34% and 99.45% when a sufficient number of historical data is available.

摘要

如今,物联网 (IoT) 概念的发展增加了人们对某些技术的兴趣,其中之一是在家用电器出现故障之前检测它们的异常。在这项工作中,为了为使用家电功率谱进行异常检测的工作做出贡献,提出了一种新颖的家电监控和异常检测系统 (AM-ADS)。AM-ADS 由主控制器、数据库、基于物联网的通信单元、家用电器和安装在电器上的功率测量单元(智能插头或特殊测量设备)组成。在 AM-ADS 中,根据基于规则的 AM-ADS 程序,使用了一种新的基于控制图 (CC) 的方法(适用于可用历史功率谱数量有限的情况)和一种新的基于人工神经网络 (ANN) 的方法(适用于可用每个无异常和异常情况的足够数量的历史功率谱的情况),以最大限度地发挥这些方法的优势,并尽可能消除它们的缺点。根据 AM-ADS 程序,在电器运行期间测量提供有关电器健康状况的有意义信息的电器功耗,并创建相应的功率谱。功率谱的有功功率、功率因数和运行持续时间特征被视为决定性控制参数,并且这些参数的不同特征被用作 CC 和基于 ANN 的方法的输入。通过应用案例研究验证了 AM-ADS 的效率和性能,当可用历史数据数量有限时,检测异常的能力在 94.56%到 99.03%之间变化;当可用历史数据数量充足时,检测和分类异常的能力在 96.34%到 99.45%之间变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a34c/9460438/2a5b701e02b9/sensors-22-06639-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验