Suppr超能文献

物联网入侵检测分类法、参考架构和分析。

IoT Intrusion Detection Taxonomy, Reference Architecture, and Analyses.

机构信息

Department of Computer Science, University of Idaho, Moscow, ID 83844, USA.

Department of ECE, Science, University of Idaho, Moscow, ID 83844, USA.

出版信息

Sensors (Basel). 2021 Sep 26;21(19):6432. doi: 10.3390/s21196432.

Abstract

This paper surveys the deep learning (DL) approaches for intrusion-detection systems (IDSs) in Internet of Things (IoT) and the associated datasets toward identifying gaps, weaknesses, and a neutral reference architecture. A comparative study of IDSs is provided, with a review of anomaly-based IDSs on DL approaches, which include supervised, unsupervised, and hybrid methods. All techniques in these three categories have essentially been used in IoT environments. To date, only a few have been used in the anomaly-based IDS for IoT. For each of these anomaly-based IDSs, the implementation of the four categories of feature(s) extraction, classification, prediction, and regression were evaluated. We studied important performance metrics and benchmark detection rates, including the requisite efficiency of the various methods. Four machine learning algorithms were evaluated for classification purposes: Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), and an Artificial Neural Network (ANN). Therefore, we compared each via the Receiver Operating Characteristic (ROC) curve. The study model exhibits promising outcomes for all classes of attacks. The scope of our analysis examines attacks targeting the IoT ecosystem using empirically based, simulation-generated datasets (namely the Bot-IoT and the IoTID20 datasets).

摘要

本文调查了物联网入侵检测系统 (IDS) 的深度学习 (DL) 方法和相关数据集,以确定差距、弱点和中立的参考架构。提供了对 IDS 的比较研究,并回顾了基于异常的 DL 方法的 IDS,包括监督、无监督和混合方法。这三类中的所有技术基本上都已在物联网环境中使用。迄今为止,只有少数几种技术已用于物联网的异常检测 IDS。对于这些基于异常的 IDS 中的每一个,都评估了特征提取、分类、预测和回归的四个类别的实现。我们研究了重要的性能指标和基准检测率,包括各种方法的必要效率。针对分类目的评估了四种机器学习算法:逻辑回归 (LR)、支持向量机 (SVM)、决策树 (DT) 和人工神经网络 (ANN)。因此,我们通过接收者操作特征 (ROC) 曲线比较了每种算法。该研究模型对所有攻击类别的表现都很有希望。我们的分析范围检查了使用基于经验的、仿真生成的数据集(即 Bot-IoT 和 IoTID20 数据集)针对物联网生态系统的攻击。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9046/8512890/d977060c5404/sensors-21-06432-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验