Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
RIKEN Center for Brain Science (CBS), Wako 463-0003, Japan.
Sensors (Basel). 2022 Mar 17;22(6):2315. doi: 10.3390/s22062315.
Wearing a safety helmet is important in construction and manufacturing industrial activities to avoid unpleasant situations. This safety compliance can be ensured by developing an automatic helmet detection system using various computer vision and deep learning approaches. Developing a deep-learning-based helmet detection model usually requires an enormous amount of training data. However, there are very few public safety helmet datasets available in the literature, in which most of them are not entirely labeled, and the labeled one contains fewer classes. This paper presents the Safety HELmet dataset with 5K images (SHEL5K) dataset, an enhanced version of the SHD dataset. The proposed dataset consists of six completely labeled classes (, , , , , and ). The proposed dataset was tested on multiple state-of-the-art object detection models, i.e., YOLOv3 (YOLOv3, YOLOv3-tiny, and YOLOv3-SPP), YOLOv4 (YOLOv4 and YOLOv4), YOLOv5-P5 (YOLOv5s, YOLOv5m, and YOLOv5x), the Faster Region-based Convolutional Neural Network (Faster-RCNN) with the Inception V2 architecture, and YOLOR. The experimental results from the various models on the proposed dataset were compared and showed improvement in the mean Average Precision (mAP). The SHEL5K dataset had an advantage over other safety helmet datasets as it contains fewer images with better labels and more classes, making helmet detection more accurate.
在建筑和制造工业活动中,佩戴安全头盔对于避免不愉快的情况非常重要。可以通过使用各种计算机视觉和深度学习方法来开发自动头盔检测系统来确保这种安全合规性。开发基于深度学习的头盔检测模型通常需要大量的训练数据。然而,文献中几乎没有公共安全头盔数据集,其中大多数数据集没有完全标记,而标记的数据集包含的类别较少。本文提出了 Safety HELmet 数据集(SHEL5K),这是 SHD 数据集的增强版。该数据集由六个完全标记的类别(,,,,, 和 )组成。我们在多个最先进的目标检测模型上对提出的数据集进行了测试,即 YOLOv3(YOLOv3、YOLOv3-tiny 和 YOLOv3-SPP)、YOLOv4(YOLOv4 和 YOLOv4)、YOLOv5-P5(YOLOv5s、YOLOv5m 和 YOLOv5x)、具有 Inception V2 架构的 Faster Region-based Convolutional Neural Network(Faster-RCNN)和 YOLOR。将各种模型在提出的数据集上的实验结果进行了比较,并显示出平均精度(mAP)的提高。与其他安全头盔数据集相比,SHEL5K 数据集具有优势,因为它包含更少的图像,并且具有更好的标签和更多的类别,从而使头盔检测更加准确。
Sensors (Basel). 2022-3-17
Sensors (Basel). 2023-2-3
Sensors (Basel). 2022-9-5
Math Biosci Eng. 2023-3-6
Sensors (Basel). 2023-6-22
BMC Bioinformatics. 2021-3-8
Sensors (Basel). 2022-12-14
Sci Rep. 2024-3-25
Front Neurorobot. 2023-2-16
Sensors (Basel). 2022-9-5
Am J Ind Med. 2016-3