文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SHEL5K:用于安全头盔检测的扩展数据集和基准测试。

SHEL5K: An Extended Dataset and Benchmarking for Safety Helmet Detection.

机构信息

Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain 15551, United Arab Emirates.

RIKEN Center for Brain Science (CBS), Wako 463-0003, Japan.

出版信息

Sensors (Basel). 2022 Mar 17;22(6):2315. doi: 10.3390/s22062315.


DOI:10.3390/s22062315
PMID:35336491
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8950768/
Abstract

Wearing a safety helmet is important in construction and manufacturing industrial activities to avoid unpleasant situations. This safety compliance can be ensured by developing an automatic helmet detection system using various computer vision and deep learning approaches. Developing a deep-learning-based helmet detection model usually requires an enormous amount of training data. However, there are very few public safety helmet datasets available in the literature, in which most of them are not entirely labeled, and the labeled one contains fewer classes. This paper presents the Safety HELmet dataset with 5K images (SHEL5K) dataset, an enhanced version of the SHD dataset. The proposed dataset consists of six completely labeled classes (, , , , , and ). The proposed dataset was tested on multiple state-of-the-art object detection models, i.e., YOLOv3 (YOLOv3, YOLOv3-tiny, and YOLOv3-SPP), YOLOv4 (YOLOv4 and YOLOv4), YOLOv5-P5 (YOLOv5s, YOLOv5m, and YOLOv5x), the Faster Region-based Convolutional Neural Network (Faster-RCNN) with the Inception V2 architecture, and YOLOR. The experimental results from the various models on the proposed dataset were compared and showed improvement in the mean Average Precision (mAP). The SHEL5K dataset had an advantage over other safety helmet datasets as it contains fewer images with better labels and more classes, making helmet detection more accurate.

摘要

在建筑和制造工业活动中,佩戴安全头盔对于避免不愉快的情况非常重要。可以通过使用各种计算机视觉和深度学习方法来开发自动头盔检测系统来确保这种安全合规性。开发基于深度学习的头盔检测模型通常需要大量的训练数据。然而,文献中几乎没有公共安全头盔数据集,其中大多数数据集没有完全标记,而标记的数据集包含的类别较少。本文提出了 Safety HELmet 数据集(SHEL5K),这是 SHD 数据集的增强版。该数据集由六个完全标记的类别(,,,,, 和 )组成。我们在多个最先进的目标检测模型上对提出的数据集进行了测试,即 YOLOv3(YOLOv3、YOLOv3-tiny 和 YOLOv3-SPP)、YOLOv4(YOLOv4 和 YOLOv4)、YOLOv5-P5(YOLOv5s、YOLOv5m 和 YOLOv5x)、具有 Inception V2 架构的 Faster Region-based Convolutional Neural Network(Faster-RCNN)和 YOLOR。将各种模型在提出的数据集上的实验结果进行了比较,并显示出平均精度(mAP)的提高。与其他安全头盔数据集相比,SHEL5K 数据集具有优势,因为它包含更少的图像,并且具有更好的标签和更多的类别,从而使头盔检测更加准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/f2cbc9addfff/sensors-22-02315-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/beb0d1862c6d/sensors-22-02315-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/c0c581acd06b/sensors-22-02315-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/0139e91cd6df/sensors-22-02315-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/535fa063c823/sensors-22-02315-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/6ba34c8eed5c/sensors-22-02315-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/8e52fb086777/sensors-22-02315-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/e26777a6d149/sensors-22-02315-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/61a920d34f99/sensors-22-02315-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/7619c93eaeba/sensors-22-02315-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/b0b057b15d0f/sensors-22-02315-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/0967fa760f2f/sensors-22-02315-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/7ec2cc49bc7c/sensors-22-02315-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/6a61fee0b131/sensors-22-02315-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/522015f573c2/sensors-22-02315-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/f2cbc9addfff/sensors-22-02315-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/beb0d1862c6d/sensors-22-02315-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/c0c581acd06b/sensors-22-02315-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/0139e91cd6df/sensors-22-02315-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/535fa063c823/sensors-22-02315-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/6ba34c8eed5c/sensors-22-02315-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/8e52fb086777/sensors-22-02315-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/e26777a6d149/sensors-22-02315-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/61a920d34f99/sensors-22-02315-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/7619c93eaeba/sensors-22-02315-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/b0b057b15d0f/sensors-22-02315-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/0967fa760f2f/sensors-22-02315-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/7ec2cc49bc7c/sensors-22-02315-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/6a61fee0b131/sensors-22-02315-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/522015f573c2/sensors-22-02315-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2c/8950768/f2cbc9addfff/sensors-22-02315-g010.jpg

相似文献

[1]
SHEL5K: An Extended Dataset and Benchmarking for Safety Helmet Detection.

Sensors (Basel). 2022-3-17

[2]
Helmet-Wearing Tracking Detection Based on StrongSORT.

Sensors (Basel). 2023-2-3

[3]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[4]
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

Sensors (Basel). 2022-9-5

[5]
Research on application of helmet wearing detection improved by YOLOv4 algorithm.

Math Biosci Eng. 2023-3-6

[6]
Comparative analysis of computer vision algorithms for the real-time detection of digital dermatitis in dairy cows.

Prev Vet Med. 2024-8

[7]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[8]
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

BMC Bioinformatics. 2021-3-8

[9]
Helmet Wearing State Detection Based on Improved Yolov5s.

Sensors (Basel). 2022-12-14

[10]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

引用本文的文献

[1]
Learning-efficient spiking neural networks with multi-compartment spatio-temporal backpropagation.

iScience. 2025-6-3

[2]
Efficient three-dimensional point cloud object detection based on improved Complex-YOLO.

Front Neurorobot. 2023-2-16

[3]
Development of YOLOv5-Based Real-Time Smart Monitoring System for Increasing Lab Safety Awareness in Educational Institutions.

Sensors (Basel). 2022-11-15

[4]
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

Sensors (Basel). 2022-9-5

本文引用的文献

[1]
Hardhat-Wearing Detection Based on a Lightweight Convolutional Neural Network with Multi-Scale Features and a Top-Down Module.

Sensors (Basel). 2020-3-27

[2]
Fatal traumatic brain injuries in the construction industry, 2003-2010.

Am J Ind Med. 2016-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索