文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于深度学习的头盔佩戴检测集成方法。

A deep learning-based ensemble method for helmet-wearing detection.

作者信息

Fan Zheming, Peng Chengbin, Dai Licun, Cao Feng, Qi Jianyu, Hua Wenyi

机构信息

College of Information Science and Engineering, Ningbo University, Ningbo, China.

Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China.

出版信息

PeerJ Comput Sci. 2020 Dec 7;6:e311. doi: 10.7717/peerj-cs.311. eCollection 2020.


DOI:10.7717/peerj-cs.311
PMID:33816962
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7924479/
Abstract

Recently, object detection methods have developed rapidly and have been widely used in many areas. In many scenarios, helmet wearing detection is very useful, because people are required to wear helmets to protect their safety when they work in construction sites or cycle in the streets. However, for the problem of helmet wearing detection in complex scenes such as construction sites and workshops, the detection accuracy of current approaches still needs to be improved. In this work, we analyze the mechanism and performance of several detection algorithms and identify two feasible base algorithms that have complementary advantages. We use one base algorithm to detect relatively large heads and helmets. Also, we use the other base algorithm to detect relatively small heads, and we add another convolutional neural network to detect whether there is a helmet above each head. Then, we integrate these two base algorithms with an ensemble method. In this method, we first propose an approach to merge information of heads and helmets from the base algorithms, and then propose a linear function to estimate the confidence score of the identified heads and helmets. Experiments on a benchmark data set show that, our approach increases the precision and recall for base algorithms, and the mean Average Precision of our approach is 0.93, which is better than many other approaches. With GPU acceleration, our approach can achieve real-time processing on contemporary computers, which is useful in practice.

摘要

近年来,目标检测方法发展迅速,并已在许多领域得到广泛应用。在许多场景中,头盔佩戴检测非常有用,因为人们在建筑工地工作或在街上骑自行车时需要佩戴头盔以保护自身安全。然而,对于建筑工地和车间等复杂场景中的头盔佩戴检测问题,当前方法的检测精度仍有待提高。在这项工作中,我们分析了几种检测算法的机制和性能,并确定了两种具有互补优势的可行基础算法。我们使用一种基础算法来检测相对较大的头部和头盔。此外,我们使用另一种基础算法来检测相对较小的头部,并添加另一个卷积神经网络来检测每个头部上方是否有头盔。然后,我们用一种集成方法将这两种基础算法结合起来。在这种方法中,我们首先提出一种方法来融合基础算法中头部和头盔的信息,然后提出一个线性函数来估计所识别的头部和头盔的置信度得分。在一个基准数据集上进行的实验表明,我们的方法提高了基础算法的精度和召回率,并且我们方法的平均精度均值为0.93,优于许多其他方法。通过GPU加速,我们的方法可以在当代计算机上实现实时处理,这在实际应用中很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/ce7ba6ce0c4c/peerj-cs-06-311-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/c7f1189e4797/peerj-cs-06-311-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/6e4f3e0e2833/peerj-cs-06-311-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/4dfd113b0c31/peerj-cs-06-311-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/76e58652f389/peerj-cs-06-311-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/e1bc92fcb242/peerj-cs-06-311-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/759b2efa1564/peerj-cs-06-311-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/eb6befc32669/peerj-cs-06-311-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/c0f7d2e77188/peerj-cs-06-311-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/39d2075a41c7/peerj-cs-06-311-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/ce7ba6ce0c4c/peerj-cs-06-311-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/c7f1189e4797/peerj-cs-06-311-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/6e4f3e0e2833/peerj-cs-06-311-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/4dfd113b0c31/peerj-cs-06-311-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/76e58652f389/peerj-cs-06-311-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/e1bc92fcb242/peerj-cs-06-311-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/759b2efa1564/peerj-cs-06-311-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/eb6befc32669/peerj-cs-06-311-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/c0f7d2e77188/peerj-cs-06-311-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/39d2075a41c7/peerj-cs-06-311-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e1/7924479/ce7ba6ce0c4c/peerj-cs-06-311-g011.jpg

相似文献

[1]
A deep learning-based ensemble method for helmet-wearing detection.

PeerJ Comput Sci. 2020-12-7

[2]
Helmet-Wearing Tracking Detection Based on StrongSORT.

Sensors (Basel). 2023-2-3

[3]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[4]
Helmet Wearing State Detection Based on Improved Yolov5s.

Sensors (Basel). 2022-12-14

[5]
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

Sensors (Basel). 2022-9-5

[6]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[7]
An improved YOLOv8 safety helmet wearing detection network.

Sci Rep. 2024-7-30

[8]
Non-legislative interventions for the promotion of cycle helmet wearing by children.

Cochrane Database Syst Rev. 2011-11-9

[9]
Helmet wearing detection algorithm based on improved YOLOv5.

Sci Rep. 2024-4-16

[10]
DST-DETR: Image Dehazing RT-DETR for Safety Helmet Detection in Foggy Weather.

Sensors (Basel). 2024-7-17

引用本文的文献

[1]
Cell-free circulating RAS mutation concentrations significantly impact the survival of metastatic colorectal cancer patients.

J Cancer Res Clin Oncol. 2023-8

[2]
Lightweight multi-scale network for small object detection.

PeerJ Comput Sci. 2022-11-8

[3]
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

Sensors (Basel). 2022-9-5

本文引用的文献

[1]
Detecting motorcycle helmet use with deep learning.

Accid Anal Prev. 2019-11-6

[2]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[3]
Helmets for preventing injury in motorcycle riders.

Cochrane Database Syst Rev. 2008-1-23

[4]
Helmets for preventing head and facial injuries in bicyclists.

Cochrane Database Syst Rev. 2000

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索