Suppr超能文献

相似文献

1
DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection.
Environ Model Softw. 2020 Mar 10;127. doi: 10.1016/j.envsoft.2020.104666. eCollection 2020 May.
2
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring.
Agronomy (Basel). 2020 Apr 27;10(5):618. doi: 10.3390/agronomy10050618.
3
Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine.
Remote Sens (Basel). 2021 Jan 24;13(3):403. doi: 10.3390/rs13030403.
5
Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression.
Remote Sens (Basel). 2021 Dec 29;14(1):146. doi: 10.3390/rs14010146.
6
Estimating the phenological dynamics of irrigated rice leaf area index using the combination of PROSAIL and Gaussian Process Regression.
Int J Appl Earth Obs Geoinf. 2021 Jul 24;102:102454. doi: 10.1016/j.jag.2021.102454. eCollection 2021 Oct.
7
Fusing optical and SAR time series for LAI gap fillingwith multioutput Gaussian processes.
Remote Sens Environ. 2019 Dec 15;235. doi: 10.1016/j.rse.2019.111452.
8
Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data.
ISPRS J Photogramm Remote Sens. 2020 Sep;167:289-304. doi: 10.1016/j.isprsjprs.2020.07.004.
9
Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data.
Remote Sens Environ. 2022 Mar 4;273:112958. doi: 10.1016/j.rse.2022.112958. eCollection 2022 May.

引用本文的文献

1
Generation of High-Resolution Time-Series NDVI Images for Monitoring Heterogeneous Crop Fields.
Sensors (Basel). 2025 Aug 20;25(16):5183. doi: 10.3390/s25165183.
3
Changes in Onset of Vegetation Growth on Svalbard, 2000-2020.
Remote Sens (Basel). 2022 Dec 15;14(24):6346. doi: 10.3390/rs14246346.
4
Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine.
Remote Sens (Basel). 2021 Jan 24;13(3):403. doi: 10.3390/rs13030403.
5
Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery.
Remote Sens (Basel). 2021 Nov 21;13(22):4711. doi: 10.3390/rs13224711.
6
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring.
Agronomy (Basel). 2020 Apr 27;10(5):618. doi: 10.3390/agronomy10050618.
7
Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression.
Remote Sens (Basel). 2021 Dec 29;14(1):146. doi: 10.3390/rs14010146.

本文引用的文献

1
Fusing optical and SAR time series for LAI gap fillingwith multioutput Gaussian processes.
Remote Sens Environ. 2019 Dec 15;235. doi: 10.1016/j.rse.2019.111452.
2
Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods.
Surv Geophys. 2019;40:589-629. doi: 10.1007/s10712-018-9478-y. Epub 2018 Jun 1.
3
Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations.
ISPRS J Photogramm Remote Sens. 2016 Apr;114:191-205. doi: 10.1016/j.isprsjprs.2016.02.010. Epub 2016 Mar 3.
4
Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015.
Sci Rep. 2017 Nov 7;7(1):14770. doi: 10.1038/s41598-017-14918-4.
6
An effective approach for gap-filling continental scale remotely sensed time-series.
ISPRS J Photogramm Remote Sens. 2014 Dec;98:106-118. doi: 10.1016/j.isprsjprs.2014.10.001.
7
Principled missing data methods for researchers.
Springerplus. 2013 May 14;2(1):222. doi: 10.1186/2193-1801-2-222. Print 2013 Dec.
8
Near-surface remote sensing of spatial and temporal variation in canopy phenology.
Ecol Appl. 2009 Sep;19(6):1417-28. doi: 10.1890/08-2022.1.
9
A perfect smoother.
Anal Chem. 2003 Jul 15;75(14):3631-6. doi: 10.1021/ac034173t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验