Suppr超能文献

基于哨兵 - 2 大气层顶数据,利用高斯过程在谷歌地球引擎中检索作物性状。

Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data.

作者信息

Estévez José, Salinero-Delgado Matías, Berger Katja, Pipia Luca, Rivera-Caicedo Juan Pablo, Wocher Matthias, Reyes-Muñoz Pablo, Tagliabue Giulia, Boschetti Mirco, Verrelst Jochem

机构信息

Image Processing Laboratory (IPL), Universitat de València, C/Catedrático José Beltrán, 2, 46980 Paterna, València, Spain.

Ludwig-Maximilians-Universität München, Munich (LMU), Department of Geography, Luisenstr. 37, 80333 Munich, Germany.

出版信息

Remote Sens Environ. 2022 Mar 4;273:112958. doi: 10.1016/j.rse.2022.112958. eCollection 2022 May.

Abstract

The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically- based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C) top-of-atmosphere (TOA) reflectance data into crop traits. To achieve this, a training dataset was generated using the leaf-canopy RTM PROSAIL in combination with the atmospheric model 6SV. Gaussian process regression (GPR) retrieval models were then established for eight essential crop traits namely leaf chlorophyll content, leaf water content, leaf dry matter content, fractional vegetation cover, leaf area index (LAI), and upscaled leaf variables (i.e., canopy chlorophyll content, canopy water content and canopy dry matter content). An important pre-requisite for implementation into GEE is that the models are sufficiently light in order to facilitate efficient and fast processing. Successful reduction of the training dataset by 78% was achieved using the active learning technique Euclidean distance-based diversity (EBD). With the EBD-GPR models, highly accurate validation results of LAI and upscaled leaf variables were obtained against in situ field data from the validation study site Munich-North-Isar (MNI), with normalized root mean square errors (NRMSE) from 6% to 13%. Using an independent validation dataset of similar crop types (Italian Grosseto test site), the retrieval models showed moderate to good performances for canopy-level variables, with NRMSE ranging from 14% to 50%, but failed for the leaf-level estimates. Obtained maps over the MNI site were further compared against Sentinel-2 Level 2 Prototype Processor (SL2P) vegetation estimates generated from the ESA Sentinels' Application Platform (SNAP) Biophysical Processor, proving high consistency of both retrievals ( from 0.80 to 0.94). Finally, thanks to the seamless GEE processing capability, the TOA-based mapping was applied over the entirety of Germany at 20 m spatial resolution including information about prediction uncertainty. The obtained maps provided confidence of the developed EBD-GPR retrieval models for integration in the GEE framework and national scale mapping from S2-L1C imagery. In summary, the proposed retrieval workflow demonstrates the possibility of routine processing of S2 TOA data into crop traits maps at any place on Earth as required for operational agricultural applications.

摘要

在基于云计算的平台(如谷歌地球引擎(GEE))中,光学卫星数据前所未有的可用性为开发从局部到全球尺度的作物性状检索模型开辟了新的可能性。混合检索模型在这些平台中很受关注,因为它们结合了基于物理的辐射传输模型(RTM)的优势和机器学习回归算法的灵活性。先前在GEE上的研究主要依赖于处理大气底部(BOA)反射率数据,这需要进行大气校正。在本研究中,我们将混合模型直接应用于GEE,用于将哨兵 - 2(S2)一级C级(L1C)大气顶(TOA)反射率数据处理为作物性状。为此,使用叶冠层RTM PROSAIL结合大气模型6SV生成了一个训练数据集。然后针对八个重要的作物性状建立了高斯过程回归(GPR)检索模型,即叶片叶绿素含量、叶片含水量、叶片干物质含量、植被覆盖度、叶面积指数(LAI)以及上采样的叶片变量(即冠层叶绿素含量、冠层含水量和冠层干物质含量)。在GEE中实现的一个重要前提是模型要足够轻量级,以便于高效快速处理。使用基于欧几里得距离的多样性(EBD)主动学习技术成功将训练数据集减少了78%。利用EBD - GPR模型,针对来自验证研究地点慕尼黑 - 北 - 伊萨尔(MNI)的实地数据,获得了LAI和上采样叶片变量的高精度验证结果,归一化均方根误差(NRMSE)在6%至13%之间。使用类似作物类型的独立验证数据集(意大利格罗塞托测试地点),检索模型对冠层水平变量表现出中等至良好的性能,NRMSE范围为14%至50%,但叶片水平估计失败。将在MNI站点获得的地图与从欧洲航天局哨兵应用平台(SNAP)生物物理处理器生成的哨兵 - 2二级原型处理器(SL2P)植被估计进行了进一步比较,证明两者检索结果具有高度一致性(相关系数从0.80到0.94)。最后,由于GEE具有无缝处理能力,基于TOA的制图以20米空间分辨率应用于整个德国,包括预测不确定性信息。所获得的地图为开发的EBD - GPR检索模型在GEE框架和从S2 - L1C图像进行国家尺度制图中的集成提供了信心支持。总之,所提出的检索工作流程展示了将S2 TOA数据常规处理为地球任何地方的作物性状地图以满足农业应用需求的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d33/7613387/79aed4a65d7f/EMS152681-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验