Suppr超能文献

通过机器学习,mRNA 相关代谢风险评分模型确定了结直肠癌患者不良预后、免疫逃避结构和低化疗反应的特征。

mRNAsi-related metabolic risk score model identifies poor prognosis, immunoevasive contexture, and low chemotherapy response in colorectal cancer patients through machine learning.

机构信息

Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China.

Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China.

出版信息

Front Immunol. 2022 Aug 23;13:950782. doi: 10.3389/fimmu.2022.950782. eCollection 2022.

Abstract

Colorectal cancer (CRC) is one of the most fatal cancers of the digestive system. Although cancer stem cells and metabolic reprogramming have an important effect on tumor progression and drug resistance, their combined effect on CRC prognosis remains unclear. Therefore, we generated a 21-gene mRNA stemness index-related metabolic risk score model, which was examined in The Cancer Genome Atlas and Gene Expression Omnibus databases (1323 patients) and validated using the Zhongshan Hospital cohort (200 patients). The high-risk group showed more immune infiltrations; higher levels of immunosuppressive checkpoints, such as CD274, tumor mutation burden, and resistance to chemotherapeutics; potentially better response to immune therapy; worse prognosis; and advanced stage of tumor node metastasis than the low-risk group. The combination of risk score and clinical characteristics was effective in predicting overall survival. Zhongshan cohort validated that high-risk score group correlated with malignant progression, worse prognosis, inferior adjuvant chemotherapy responsiveness of CRC, and shaped an immunoevasive contexture. This tool may provide a more accurate risk stratification in CRC and screening of patients with CRC responsive to immunotherapy.

摘要

结直肠癌(CRC)是消化系统中最致命的癌症之一。尽管癌症干细胞和代谢重编程对肿瘤进展和耐药性有重要影响,但它们对 CRC 预后的综合影响尚不清楚。因此,我们生成了一个 21 个基因 mRNA 干性指数相关的代谢风险评分模型,该模型在癌症基因组图谱和基因表达综合数据库(1323 名患者)中进行了检验,并使用中山医院队列(200 名患者)进行了验证。高危组表现出更多的免疫浸润;更高水平的免疫抑制检查点,如 CD274、肿瘤突变负担和对化疗药物的耐药性;可能对免疫治疗有更好的反应;预后更差;肿瘤淋巴结转移分期较晚。风险评分与临床特征的结合可有效预测总生存期。中山队列验证了高危评分组与 CRC 的恶性进展、预后不良、辅助化疗反应性差相关,并形成了免疫逃避结构。该工具可能为 CRC 提供更准确的风险分层和筛选对免疫治疗有反应的 CRC 患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e57/9445443/50cc8ff68b64/fimmu-13-950782-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验