Suppr超能文献

单细胞RNA测序与批量RNA测序的整合构建了一种与干性相关的特征,用于预测肝细胞癌的预后和免疫治疗反应。

Integration of scRNA-seq and bulk RNA-seq constructs a stemness-related signature for predicting prognosis and immunotherapy responses in hepatocellular carcinoma.

作者信息

Wang Xin, Chen Xinyi, Zhao Mengmeng, Li Guanjie, Cai Daren, Yan Fangrong, Fang Jingya

机构信息

Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.

出版信息

J Cancer Res Clin Oncol. 2023 Nov;149(15):13823-13839. doi: 10.1007/s00432-023-05202-2. Epub 2023 Aug 3.

Abstract

PURPOSE

Cancer stem cells are associated with unfavorable prognosis in hepatocellular carcinoma (HCC). However, existing stemness-related biomarkers and prognostic models are limited.

METHODS

The stemness-related signatures were derived from taking the union of the results obtained by performing WGCNA and CytoTRACE analysis at the bulk RNA-seq and scRNA-seq levels, respectively. Univariate Cox regression and the LASSO were applied for filtering prognosis-related signatures and selecting variables. Finally, ten gene signatures were identified to construct the prognostic model. We evaluated the differences in survival, genomic alternation, biological processes, and degree of immune cell infiltration in the high- and low-risk groups. pRRophetic and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms were utilized to predict chemosensitivity and immunotherapy response. Human Protein Atlas (HPA) database was used to evaluate the protein expressions.

RESULTS

A stemness-related prognostic model was constructed with ten genes including YBX1, CYB5R3, CDC20, RAMP3, LDHA, MTHFS, PTRH2, SRPRB, GNA14, and CLEC3B. Kaplan-Meier and ROC curve analyses showed that the high-risk group had a worse prognosis and the AUC of the model in four datasets was greater than 0.64. Multivariate Cox regression analyses verified that the model was an independent prognostic indicator in predicting overall survival, and a nomogram was then built for clinical utility in predicting the prognosis of HCC. Additionally, chemotherapy drug sensitivity and immunotherapy response analyses revealed that the high-risk group exhibited a higher likelihood of benefiting from these treatments.

CONCLUSION

The novel stemness-related prognostic model is a promising biomarker for estimating overall survival in HCC.

摘要

目的

癌症干细胞与肝细胞癌(HCC)的不良预后相关。然而,现有的干性相关生物标志物和预后模型有限。

方法

干性相关特征分别来自于在批量RNA测序和单细胞RNA测序水平上进行加权基因共表达网络分析(WGCNA)和细胞追踪分析(CytoTRACE)所获得结果的联合。单因素Cox回归和套索回归用于筛选与预后相关的特征并选择变量。最终,鉴定出十个基因特征以构建预后模型。我们评估了高风险组和低风险组在生存、基因组改变、生物学过程以及免疫细胞浸润程度方面的差异。使用pRRophetic算法和肿瘤免疫功能障碍与排除(TIDE)算法来预测化疗敏感性和免疫治疗反应。利用人类蛋白质图谱(HPA)数据库评估蛋白质表达。

结果

构建了一个与干性相关的预后模型,包含YBX1、CYB5R3、CDC20、RAMP3、LDHA、MTHFS、PTRH2、SRPRB、GNA14和CLEC3B这十个基因。Kaplan-Meier分析和ROC曲线分析表明,高风险组预后较差,该模型在四个数据集中的AUC均大于0.64。多因素Cox回归分析验证该模型是预测总生存期的独立预后指标,随后构建了列线图用于临床预测HCC的预后。此外,化疗药物敏感性和免疫治疗反应分析表明,高风险组从这些治疗中获益的可能性更高。

结论

新的与干性相关的预后模型是评估HCC总生存期的一个有前景的生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验